Right Bol Loop 24.19.2.0 of order 24


01234567891011121314151617181920212223
12503471168910131712141516192123222018
25410311107689171613121415212218202319
30145286910117141215161713231822192120
43052198101176151416171312202321181922
54321010911768161517131214222019231821
68971110031254181923202221121315171614
76811109102543231820222119141216131715
89106711340125192118232022131714161512
91011867453012212219182320171612151413
10117986524301222021191823161513141217
11761098215430202322211918151417121316
12141513171618192320222103125467911108
13121417161523182022211910254386107119
14151612131719211823202234012571181096
15161714121321221918232045301211106987
16171315141222202119182352430110978611
17131216151420232221191821543098116710
18232019212212131415161767891011032451
19182321222014121516171386910117105342
20222123181917161312141511107689450213
21191822202315141617131298101176214035
22211920231816151713121410911768523104
23202218192113171214151671168910341520

Centre:   0   5

Centrum:   0   5

Nucleus:   0   5

Left Nucleus:   0   5   6   10   12   16   18   22

Middle Nucleus:   0   1   2   3   4   5

Right Nucleus:   0   1   2   3   4   5

1 Element of order 1:   0

19 Elements of order 2:   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

2 Elements of order 3:   2   4

2 Elements of order 6:   1   3

Commutator Subloop:   0   2   4

Associator Subloop:   0   2   4

2 Conjugacy Classes of size 1:

2 Conjugacy Classes of size 2:

6 Conjugacy Classes of size 3:

Automorphic Inverse Property:   FAILS.   (1-1)(7-1) neq (1*7)-1

Al Property:   FAILS. The left inner mapping L6,1 = (12,17,15)(13,16,14)(18,21,20)(19,22,23) is not an automorphism.   L6,1(12*6) neq L6,1(12)*L6,1(6)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   48 (648, 1296)


/ revised November, 2001