Right Bol Loop 24.13.1.0 of order 24


01234567891011121314151617181920212223
10131714151620191822232174869235111210
21301417161522212320181912311510614879
31514161301723222119201810512211146987
41617150131418201921222396718352101112
51716015141321232218192011210312461798
61415131617019182023212281947523121011
71822231921201614013171549186121011523
81921222023181401617151317694111210235
92023211822190161415131768471101112352
10232018211922151713014165113122798461
11221819232021131517160142125103987146
12211920221823171315141603102115879614
13214365101211798141701516212223181920
14635124978121011171613015192018232122
15361542121110987013161714232122192018
16452631897111210150171413201819222321
17546213111012879161514130222321201819
18711129108164523211923202216014131715
19812107119416352222021182301416151317
20910118127641235231822192114160171513
21128710911325461192218232015131701416
22117912810532146202319211813171516014
23109811712253614182120221917151314160

Centre:   0

Centrum:   0

Nucleus:   0

Left Nucleus:   0   17   20   21

Middle Nucleus:   0   14   16

Right Nucleus:   0   14   16

1 Element of order 1:   0

13 Elements of order 2:   1   2   4   6   8   10   11   12   17   20   21   22   23

2 Elements of order 3:   14   16

8 Elements of order 6:   3   5   7   9   13   15   18   19

Commutator Subloop:   0   14   16   21   22   23

Associator Subloop:   0   14   16   21   22   23

1 Conjugacy Class of size 1:

1 Conjugacy Class of size 2:

1 Conjugacy Class of size 3:

3 Conjugacy Classes of size 6:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   FAILS. The left inner mapping L1,1 = (2,7,5,8,3,9)(10,12,11)(13,20,15,19,17,18)(21,23,22) is not an automorphism.   L1,1(2*1) neq L1,1(2)*L1,1(1)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   96 (69984, 279936)


/ revised November, 2001