Right Bol Loop 24.21.1.1 of order 24


01234567891011121314151617181920212223
10131415231719211620221868791221141035
21301514181621191722202397865110311412
31415013202116171923182286971141225110
41514130221917162118232079681035112211
51617192101820222314151312111012648379
61823222017015141321191613412957108112
72022231819150131416172142110811612953
82220182321141301517161931211710956124
92318202216131415019211724356128117101
10192116171422231820013151112534826197
11211917161520182322130141051243719268
12171621191323222018151405101121937486
13214312987611105015141716232122192018
14341210896751211150131921221623171820
15432111769812510141302119201718162322
16512101192341786182022231317141915210
17125111061432879232220180161521141913
18698725111012431162119132302215201417
19101151274123968222318201521016131714
20789631151210124211617142215230181319
21111012583214697201823221419131701615
22876941012511213191716152014181323021
23967811210115342171921018132014221516

Centre:   0

Centrum:   0

Nucleus:   0

Left Nucleus:   0   13   14   15

Middle Nucleus:   0   16   23

Right Nucleus:   0   16   23

1 Element of order 1:   0

21 Elements of order 2:   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   17   18   19   20   21   22

2 Elements of order 3:   16   23

Commutator Subloop:   0   13   16   17   18   23

Associator Subloop:   0   13   16   17   18   23

1 Conjugacy Class of size 1:

1 Conjugacy Class of size 2:

1 Conjugacy Class of size 3:

3 Conjugacy Classes of size 6:

Automorphic Inverse Property:   FAILS.   (1-1)(6-1) neq (1*6)-1

Al Property:   FAILS. The left inner mapping L1,1 = (2,6,12)(3,8,10,4,7,11)(13,17,18)(14,21,20,15,19,22) is not an automorphism.   L1,1(2*1) neq L1,1(2)*L1,1(1)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   96 (69984, 839808)


/ revised November, 2001