0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
1 | 0 | 13 | 14 | 15 | 23 | 17 | 19 | 21 | 16 | 20 | 22 | 18 | 6 | 8 | 7 | 9 | 12 | 2 | 11 | 4 | 10 | 3 | 5 |
2 | 13 | 0 | 15 | 14 | 18 | 16 | 21 | 19 | 17 | 22 | 20 | 23 | 9 | 7 | 8 | 6 | 5 | 1 | 10 | 3 | 11 | 4 | 12 |
3 | 14 | 15 | 0 | 13 | 20 | 21 | 16 | 17 | 19 | 23 | 18 | 22 | 8 | 6 | 9 | 7 | 11 | 4 | 12 | 2 | 5 | 1 | 10 |
4 | 15 | 14 | 13 | 0 | 22 | 19 | 17 | 16 | 21 | 18 | 23 | 20 | 7 | 9 | 6 | 8 | 10 | 3 | 5 | 1 | 12 | 2 | 11 |
5 | 16 | 17 | 19 | 21 | 0 | 18 | 20 | 22 | 23 | 14 | 15 | 13 | 12 | 11 | 10 | 1 | 2 | 6 | 4 | 8 | 3 | 7 | 9 |
6 | 18 | 23 | 22 | 20 | 17 | 0 | 15 | 14 | 13 | 21 | 19 | 16 | 1 | 3 | 4 | 12 | 9 | 5 | 7 | 10 | 8 | 11 | 2 |
7 | 20 | 22 | 23 | 18 | 19 | 15 | 0 | 13 | 14 | 16 | 17 | 21 | 4 | 2 | 1 | 10 | 8 | 11 | 6 | 12 | 9 | 5 | 3 |
8 | 22 | 20 | 18 | 23 | 21 | 14 | 13 | 0 | 15 | 17 | 16 | 19 | 3 | 1 | 2 | 11 | 7 | 10 | 9 | 5 | 6 | 12 | 4 |
9 | 23 | 18 | 20 | 22 | 16 | 13 | 14 | 15 | 0 | 19 | 21 | 17 | 2 | 4 | 3 | 5 | 6 | 12 | 8 | 11 | 7 | 10 | 1 |
10 | 19 | 21 | 16 | 17 | 14 | 22 | 23 | 18 | 20 | 0 | 13 | 15 | 11 | 12 | 5 | 3 | 4 | 8 | 2 | 6 | 1 | 9 | 7 |
11 | 21 | 19 | 17 | 16 | 15 | 20 | 18 | 23 | 22 | 13 | 0 | 14 | 10 | 5 | 12 | 4 | 3 | 7 | 1 | 9 | 2 | 6 | 8 |
12 | 17 | 16 | 21 | 19 | 13 | 23 | 22 | 20 | 18 | 15 | 14 | 0 | 5 | 10 | 11 | 2 | 1 | 9 | 3 | 7 | 4 | 8 | 6 |
13 | 2 | 1 | 4 | 3 | 12 | 9 | 8 | 7 | 6 | 11 | 10 | 5 | 0 | 15 | 14 | 17 | 16 | 23 | 21 | 22 | 19 | 20 | 18 |
14 | 3 | 4 | 1 | 2 | 10 | 8 | 9 | 6 | 7 | 5 | 12 | 11 | 15 | 0 | 13 | 19 | 21 | 22 | 16 | 23 | 17 | 18 | 20 |
15 | 4 | 3 | 2 | 1 | 11 | 7 | 6 | 9 | 8 | 12 | 5 | 10 | 14 | 13 | 0 | 21 | 19 | 20 | 17 | 18 | 16 | 23 | 22 |
16 | 5 | 12 | 10 | 11 | 9 | 2 | 3 | 4 | 1 | 7 | 8 | 6 | 18 | 20 | 22 | 23 | 13 | 17 | 14 | 19 | 15 | 21 | 0 |
17 | 12 | 5 | 11 | 10 | 6 | 1 | 4 | 3 | 2 | 8 | 7 | 9 | 23 | 22 | 20 | 18 | 0 | 16 | 15 | 21 | 14 | 19 | 13 |
18 | 6 | 9 | 8 | 7 | 2 | 5 | 11 | 10 | 12 | 4 | 3 | 1 | 16 | 21 | 19 | 13 | 23 | 0 | 22 | 15 | 20 | 14 | 17 |
19 | 10 | 11 | 5 | 12 | 7 | 4 | 1 | 2 | 3 | 9 | 6 | 8 | 22 | 23 | 18 | 20 | 15 | 21 | 0 | 16 | 13 | 17 | 14 |
20 | 7 | 8 | 9 | 6 | 3 | 11 | 5 | 12 | 10 | 1 | 2 | 4 | 21 | 16 | 17 | 14 | 22 | 15 | 23 | 0 | 18 | 13 | 19 |
21 | 11 | 10 | 12 | 5 | 8 | 3 | 2 | 1 | 4 | 6 | 9 | 7 | 20 | 18 | 23 | 22 | 14 | 19 | 13 | 17 | 0 | 16 | 15 |
22 | 8 | 7 | 6 | 9 | 4 | 10 | 12 | 5 | 11 | 2 | 1 | 3 | 19 | 17 | 16 | 15 | 20 | 14 | 18 | 13 | 23 | 0 | 21 |
23 | 9 | 6 | 7 | 8 | 1 | 12 | 10 | 11 | 5 | 3 | 4 | 2 | 17 | 19 | 21 | 0 | 18 | 13 | 20 | 14 | 22 | 15 | 16 |
Centre: 0
Centrum: 0
Nucleus: 0
Left Nucleus: 0 13 14 15
Middle Nucleus: 0 16 23
Right Nucleus: 0 16 23
1 Element of order 1: 0
21 Elements of order 2: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20 21 22
2 Elements of order 3: 16 23
Commutator Subloop: 0 13 16 17 18 23
Associator Subloop: 0 13 16 17 18 23
1 Conjugacy Class of size 1:
1 Conjugacy Class of size 2:
1 Conjugacy Class of size 3:
3 Conjugacy Classes of size 6:
Automorphic Inverse Property: FAILS. (1-1)(6-1) neq (1*6)-1
Al Property: FAILS. The left inner mapping L1,1 = (2,6,12)(3,8,10,4,7,11)(13,17,18)(14,21,20,15,19,22) is not an automorphism. L1,1(2*1) neq L1,1(2)*L1,1(1)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 96 (69984, 839808)