Right Bol Loop 24.19.2.1 of order 24


01234567891011121314151617181920212223
12503471168910131712141516192021222318
25410311107689171613121415202122231819
30145286910117141215161713231819202122
43052198101176151416171312222318192021
54321010911768161517131214212223181920
68971110031254181923222120151412131716
76811109102543231822212019161514121317
89106711340125192018232221141213171615
91011867453012202119182322121317161514
10117986524301212220191823131716151412
11761098215430222321201918171615141213
12141513171623182221201903125498671110
13121417161522232120191810254310986711
14151612131718192322212034012586711109
15161714121319201823222145301267111098
16171315141220211918232252430171110986
17131216151421222019182321543011109867
18232219202114121516171367891011034521
19182320212215141617131286910117103452
20191821222316151713121498101176210345
21201922231817161312141510911768521034
22212023181913171214151611107689452103
23222118192012131415161771168910345210

Centre:   0   5

Centrum:   0   5

Nucleus:   0   5

Left Nucleus:   0   5   8   11

Middle Nucleus:   0   1   2   3   4   5

Right Nucleus:   0   1   2   3   4   5

1 Element of order 1:   0

19 Elements of order 2:   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23

2 Elements of order 3:   2   4

2 Elements of order 6:   1   3

Commutator Subloop:   0   1   2   3   4   5

Associator Subloop:   0   1   2   3   4   5

2 Conjugacy Classes of size 1:

2 Conjugacy Classes of size 2:

3 Conjugacy Classes of size 6:

Automorphic Inverse Property:   FAILS.   (1-1)(7-1) neq (1*7)-1

Al Property:   FAILS. The left inner mapping L6,1 = (12,17,15)(13,16,14)(18,20,22)(19,21,23) is not an automorphism.   L6,1(12*6) neq L6,1(12)*L6,1(6)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   48 (2592, 10368)


/ revised November, 2001