Group 20.1.20.0 of order 20


012345678910111213141516171819
116151819171214011134352810976
215181917161112141305413781069
318191716151311120141524678910
419171615180131114122135967108
517161518191401312113241109687
612111301416171915188107943251
714121113017191816151098632145
801412111319181517169610721534
911130141215161718197861054312
101301412111815161917679815423
114512381097614012131719181615
123451210968701314111918151716
135123478106912141101617191518
142345196710813110121815161917
158769104325117191618140131211
161087693214519181715013111412
179108762153418151916131112014
187691085431216171519121401113
196910871542315161817111214130

Centre:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

Centrum:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

1 Element of order 1:   0

1 Element of order 2:   19

2 Elements of order 4:   5   7

4 Elements of order 5:   11   12   13   14

4 Elements of order 10:   15   16   17   18

8 Elements of order 20:   1   2   3   4   6   8   9   10

Commutator Subloop:   0

Associator Subloop:   0

20 Conjugacy Classes of size 1:

Automorphic Inverse Property:   HOLDS

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   20 (20, 20)


/ revised November, 2001