Moufang Loop 20.15.1.1 of order 20


012345678910111213141516171819
140238956716151817101912111413
203417895614171619181110131215
324109567818131015121714191611
431026789512191411161318151017
578690312413181510171219141116
689754031215161718191011121314
795862403117141916111813101512
856971240319121114131615181710
967583124011101312151417161918
101416121813151719110935162748
111715191318161412109084726153
121618141015171911134809351627
131917111510181614125390847261
141810161217191113152748093516
151119131712101816146153908472
161012181419111315171627480935
171311151914121018167261539084
181214101611131517193516274809
191513171116141210188472615390

Centre:   0

Centrum:   0

Nucleus:   0

Left Nucleus:   0

Middle Nucleus:   0

Right Nucleus:   0

1 Element of order 1:   0

15 Elements of order 2:   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

4 Elements of order 5:   1   2   3   4

Commutator Subloop:   0   1   2   3   4

Associator Subloop:   0   1   2   3   4

1 Conjugacy Class of size 1:

2 Conjugacy Classes of size 2:

3 Conjugacy Classes of size 5:

Automorphic Inverse Property:   FAILS.   (1-1)(6-1) neq (1*6)-1

Al Property:   FAILS. The left inner mapping L1,5 = (10,12,14,16,18)(11,19,17,15,13) is not an automorphism.   L1,5(5*10) neq L1,5(5)*L1,5(10)

Ar Property:   FAILS. The right inner mapping R1,5 = (10,18,16,14,12)(11,13,15,17,19) is not an automorphism.   R1,5(5*10) neq R1,5(5)*R1,5(10)

Right (Left, Full) Mult Group Orders:   5000 (5000, 20000)


/ revised November, 2001