Group 16.3.4.21 of order 16


0123456789101112131415
1032547698111015141312
2310675410119814121513
3201764511108913151214
4567012312151413811109
5476103215121314910118
6754231014131512108911
7645320113141215119810
8911101215131410235764
9810111512141301324675
1011891413121532107456
1110981314151223016547
1215131489111054671320
1314151211109867452103
1413121510118976543012
1512141398101145760231

Centre:   0   1   4   5

Centrum:   0   1   4   5

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15

1 Element of order 1:   0

3 Elements of order 2:   1   4   5

12 Elements of order 4:   2   3   6   7   8   9   10   11   12   13   14   15

Commutator Subloop:   0   1

Associator Subloop:   0

4 Conjugacy Classes of size 1:

6 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (2-1)(9-1) neq (2*9)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   16 (16, 64)


/ revised October, 2001