Group 20.1.2.0 of order 20


012345678910111213141516171819
116171918151311121403425910687
215161719180131112144531106798
318151617191401311125142678109
419181516171214013111253789610
517191815161112140132314891076
614013111216171918158971012354
712140131115161719189108623415
811121401318151617191069734521
913111214019181516176710845132
100131112141719181516786951243
114512391067814012131719181615
123451289106701314111918151716
135123410678912141101617191518
142345178910613110121815161917
156789103451217191618121401113
161067892345119181715140131211
179106781234518151916013111412
187891064512316171519111214130
198910675123415161817131112014

Centre:   0   16

Centrum:   0   16

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

1 Element of order 1:   0

1 Element of order 2:   16

10 Elements of order 4:   1   2   3   4   5   6   7   8   9   10

4 Elements of order 5:   11   12   13   14

4 Elements of order 10:   15   17   18   19

Commutator Subloop:   0   11   12   13   14

Associator Subloop:   0

2 Conjugacy Classes of size 1:

4 Conjugacy Classes of size 2:

2 Conjugacy Classes of size 5:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   20 (20, 200)


/ revised November, 2001