0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
1 | 2 | 5 | 0 | 3 | 4 | 7 | 11 | 6 | 8 | 9 | 10 |
2 | 5 | 4 | 1 | 0 | 3 | 11 | 10 | 7 | 6 | 8 | 9 |
3 | 0 | 1 | 4 | 5 | 2 | 8 | 6 | 9 | 10 | 11 | 7 |
4 | 3 | 0 | 5 | 2 | 1 | 9 | 8 | 10 | 11 | 7 | 6 |
5 | 4 | 3 | 2 | 1 | 0 | 10 | 9 | 11 | 7 | 6 | 8 |
6 | 7 | 11 | 8 | 9 | 10 | 0 | 1 | 3 | 4 | 5 | 2 |
7 | 11 | 10 | 6 | 8 | 9 | 1 | 2 | 0 | 3 | 4 | 5 |
8 | 6 | 7 | 9 | 10 | 11 | 3 | 0 | 4 | 5 | 2 | 1 |
9 | 8 | 6 | 10 | 11 | 7 | 4 | 3 | 5 | 2 | 1 | 0 |
10 | 9 | 8 | 11 | 7 | 6 | 5 | 4 | 2 | 1 | 0 | 3 |
11 | 10 | 9 | 7 | 6 | 8 | 2 | 5 | 1 | 0 | 3 | 4 |
Centre: 0 1 2 3 4 5 6 7 8 9 10 11
Centrum: 0 1 2 3 4 5 6 7 8 9 10 11
Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11
Left Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11
Middle Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11
Right Nucleus: 0 1 2 3 4 5 6 7 8 9 10 11
1 Element of order 1: 0
3 Elements of order 2: 5 6 10
2 Elements of order 3: 2 4
6 Elements of order 6: 1 3 7 8 9 11
Commutator Subloop: 0
Associator Subloop: 0
12 Conjugacy Classes of size 1:
Automorphic Inverse Property: HOLDS
Al Property: HOLDS (i.e. every left inner mapping La,b is an automorphism)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 12 (12, 12)