Group 12.3.12.0 of order 12


01234567891011
12503471168910
25410311107689
30145286910117
43052198101176
54321010911768
67118910013452
71110689120345
86791011304521
98610117435210
10981176542103
11109768251034

Centre:   0   1   2   3   4   5   6   7   8   9   10   11

Centrum:   0   1   2   3   4   5   6   7   8   9   10   11

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11

1 Element of order 1:   0

3 Elements of order 2:   5   6   10

2 Elements of order 3:   2   4

6 Elements of order 6:   1   3   7   8   9   11

Commutator Subloop:   0

Associator Subloop:   0

12 Conjugacy Classes of size 1:

Automorphic Inverse Property:   HOLDS

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   12 (12, 12)


/ revised November, 2001