0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
1 | 0 | 5 | 20 | 3 | 16 | 27 | 25 | 26 | 12 | 23 | 22 | 21 | 8 | 19 | 18 | 17 | 4 | 15 | 14 | 13 | 2 | 11 | 10 | 9 | 7 | 24 | 6 |
2 | 3 | 25 | 1 | 0 | 7 | 4 | 5 | 6 | 11 | 8 | 9 | 10 | 15 | 12 | 13 | 14 | 19 | 16 | 17 | 18 | 23 | 20 | 21 | 22 | 24 | 27 | 26 |
3 | 2 | 1 | 22 | 27 | 18 | 26 | 24 | 23 | 14 | 21 | 20 | 19 | 10 | 17 | 16 | 15 | 6 | 13 | 12 | 11 | 0 | 9 | 8 | 7 | 5 | 25 | 4 |
4 | 5 | 0 | 27 | 6 | 1 | 8 | 9 | 10 | 7 | 12 | 13 | 14 | 11 | 16 | 17 | 18 | 15 | 20 | 21 | 22 | 19 | 24 | 26 | 25 | 2 | 23 | 3 |
5 | 4 | 7 | 18 | 1 | 14 | 3 | 2 | 27 | 10 | 26 | 24 | 23 | 6 | 21 | 20 | 19 | 0 | 17 | 16 | 15 | 25 | 13 | 12 | 11 | 9 | 22 | 8 |
6 | 7 | 4 | 26 | 8 | 3 | 10 | 11 | 12 | 5 | 14 | 15 | 16 | 9 | 18 | 19 | 20 | 13 | 22 | 23 | 24 | 17 | 25 | 27 | 2 | 0 | 21 | 1 |
7 | 6 | 9 | 16 | 5 | 12 | 1 | 0 | 3 | 8 | 27 | 25 | 26 | 4 | 23 | 22 | 21 | 2 | 19 | 18 | 17 | 24 | 15 | 14 | 13 | 11 | 20 | 10 |
8 | 9 | 6 | 23 | 10 | 27 | 12 | 13 | 14 | 1 | 16 | 17 | 18 | 7 | 20 | 21 | 22 | 11 | 24 | 26 | 25 | 15 | 2 | 3 | 0 | 4 | 19 | 5 |
9 | 8 | 11 | 14 | 7 | 10 | 5 | 4 | 1 | 6 | 3 | 2 | 27 | 0 | 26 | 24 | 23 | 25 | 21 | 20 | 19 | 22 | 17 | 16 | 15 | 13 | 18 | 12 |
10 | 11 | 8 | 21 | 12 | 26 | 14 | 15 | 16 | 3 | 18 | 19 | 20 | 5 | 22 | 23 | 24 | 9 | 25 | 27 | 2 | 13 | 0 | 1 | 4 | 6 | 17 | 7 |
11 | 10 | 13 | 12 | 9 | 8 | 7 | 6 | 5 | 4 | 1 | 0 | 3 | 2 | 27 | 25 | 26 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 15 | 16 | 14 |
12 | 13 | 10 | 19 | 14 | 23 | 16 | 17 | 18 | 27 | 20 | 21 | 22 | 1 | 24 | 26 | 25 | 7 | 2 | 3 | 0 | 11 | 4 | 5 | 6 | 8 | 15 | 9 |
13 | 12 | 15 | 10 | 11 | 6 | 9 | 8 | 7 | 0 | 5 | 4 | 1 | 25 | 3 | 2 | 27 | 22 | 26 | 24 | 23 | 18 | 21 | 20 | 19 | 17 | 14 | 16 |
14 | 15 | 12 | 17 | 16 | 21 | 18 | 19 | 20 | 26 | 22 | 23 | 24 | 3 | 25 | 27 | 2 | 5 | 0 | 1 | 4 | 9 | 6 | 7 | 8 | 10 | 13 | 11 |
15 | 14 | 17 | 8 | 13 | 4 | 11 | 10 | 9 | 2 | 7 | 6 | 5 | 24 | 1 | 0 | 3 | 20 | 27 | 25 | 26 | 16 | 23 | 22 | 21 | 19 | 12 | 18 |
16 | 17 | 14 | 15 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 26 | 25 | 27 | 2 | 3 | 0 | 1 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 11 | 13 |
17 | 16 | 19 | 6 | 15 | 0 | 13 | 12 | 11 | 25 | 9 | 8 | 7 | 22 | 5 | 4 | 1 | 18 | 3 | 2 | 27 | 14 | 26 | 24 | 23 | 21 | 10 | 20 |
18 | 19 | 16 | 13 | 20 | 17 | 22 | 23 | 24 | 21 | 25 | 27 | 2 | 26 | 0 | 1 | 4 | 3 | 6 | 7 | 8 | 5 | 10 | 11 | 12 | 14 | 9 | 15 |
19 | 18 | 21 | 4 | 17 | 2 | 15 | 14 | 13 | 24 | 11 | 10 | 9 | 20 | 7 | 6 | 5 | 16 | 1 | 0 | 3 | 12 | 27 | 25 | 26 | 23 | 8 | 22 |
20 | 21 | 18 | 11 | 22 | 15 | 24 | 26 | 25 | 19 | 2 | 3 | 0 | 23 | 4 | 5 | 6 | 27 | 8 | 9 | 10 | 1 | 12 | 13 | 14 | 16 | 7 | 17 |
21 | 20 | 23 | 0 | 19 | 25 | 17 | 16 | 15 | 22 | 13 | 12 | 11 | 18 | 9 | 8 | 7 | 14 | 5 | 4 | 1 | 10 | 3 | 2 | 27 | 26 | 6 | 24 |
22 | 23 | 20 | 9 | 24 | 13 | 25 | 27 | 2 | 17 | 0 | 1 | 4 | 21 | 6 | 7 | 8 | 26 | 10 | 11 | 12 | 3 | 14 | 15 | 16 | 18 | 5 | 19 |
23 | 22 | 26 | 2 | 21 | 24 | 19 | 18 | 17 | 20 | 15 | 14 | 13 | 16 | 11 | 10 | 9 | 12 | 7 | 6 | 5 | 8 | 1 | 0 | 3 | 27 | 4 | 25 |
24 | 26 | 22 | 7 | 25 | 11 | 2 | 3 | 0 | 15 | 4 | 5 | 6 | 19 | 8 | 9 | 10 | 23 | 12 | 13 | 14 | 27 | 16 | 17 | 18 | 20 | 1 | 21 |
25 | 27 | 24 | 5 | 2 | 9 | 0 | 1 | 4 | 13 | 6 | 7 | 8 | 17 | 10 | 11 | 12 | 21 | 14 | 15 | 16 | 26 | 18 | 19 | 20 | 22 | 3 | 23 |
26 | 24 | 27 | 25 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 1 | 3 | 0 | 2 |
27 | 25 | 3 | 24 | 26 | 20 | 23 | 22 | 21 | 16 | 19 | 18 | 17 | 12 | 15 | 14 | 13 | 8 | 11 | 10 | 9 | 4 | 7 | 6 | 5 | 1 | 2 | 0 |
Centre: 0
Centrum: 0 16 26
Nucleus: 0
Left Nucleus: 0 11 16 26
Middle Nucleus: 0 6 10 14 18 22 25
Right Nucleus: 0 6 10 14 18 22 25
1 Element of order 1: 0
9 Elements of order 2: 1 7 11 15 16 19 23 26 27
6 Elements of order 7: 6 10 14 18 22 25
12 Elements of order 14: 2 3 4 5 8 9 12 13 17 20 21 24
Commutator Subloop: 0 6 10 14 18 22 25
Associator Subloop: 0 6 10 14 18 22 25
1 Conjugacy Class of size 1:
3 Conjugacy Classes of size 2:
3 Conjugacy Classes of size 7:
Automorphic Inverse Property: FAILS. (1-1)(3-1) neq (1*3)-1
Al Property: FAILS. The left inner mapping L1,1 = (2,16,4,20,8,24,12)(3,13,26,9,21,5,17) is not an automorphism. L1,1(2*1) neq L1,1(2)*L1,1(1)
Ar Property: HOLDS (i.e. every right inner mapping Ra,b is an automorphism)
Right (Left, Full) Mult Group Orders: 56 (9604, 19208)