Right Bol Loop 21.14.1.0 of order 21


01234567891011121314151617181920
14026351378910111217181419162015
20351648910111213716201814151719
32560419101112137818191516201417
46105231213789101119161720141518
53642101011121378915172018191614
65413021112137891020141915171816
79121011813161815201917146102543
81013111297181520191714164023615
91171213108152019171416181235406
10128137119201917141618150356124
11139781210191714161815202564031
12710891311171416181520193641250
13811910712141618152019175410362
14171618191520163045210121379118
15182019161714304521613891012711
16141815172019045216311137810129
17191416201815452163091112138107
18161520141917216304512789111310
19201714151618630452181011127913
20151917181416521630479101113812

Centre:   0

Centrum:   0

Nucleus:   0

Left Nucleus:   0   1   2   3   4   5   6

Middle Nucleus:   0

Right Nucleus:   0

1 Element of order 1:   0

14 Elements of order 3:   7   8   9   10   11   12   13   14   15   16   17   18   19   20

6 Elements of order 7:   1   2   3   4   5   6

Commutator Subloop:   0   1   2   3   4   5   6

Associator Subloop:   0   1   2   3   4   5   6

1 Conjugacy Class of size 1:

1 Conjugacy Class of size 6:

2 Conjugacy Classes of size 7:

Automorphic Inverse Property:   FAILS.   (1-1)(8-1) neq (1*8)-1

Al Property:   FAILS. The left inner mapping L1,7 = (7,11,8,12,9,13,10)(14,15,17,18,19,16,20) is not an automorphism.   L1,7(7*7) neq L1,7(7)*L1,7(7)

Ar Property:   FAILS. The right inner mapping R1,7 = (7,10,13,9,12,8,11)(14,20,16,19,18,17,15) is not an automorphism.   R1,7(7*7) neq R1,7(7)*R1,7(7)

Right (Left, Full) Mult Group Orders:   147 (12348, 37044)


/ revised November, 2001