Group 20.3.20.0 of order 20


012345678910111213141516171819
140263859717191815161011121413
203517496815161719181314101211
325709184613141011121918151716
461082937512131410111719181615
537928061419181516171112131014
684190725318151617191213141110
759836240111121314101617191518
896471503214101112131815161917
978654312016171918151410111312
101715131219181114167438091526
111916141318151210174380715692
121817101415161311193807456219
131519111016171412188074362951
141618121117191013150743829165
151013191711121618149156280734
161114181912131715101562907483
171210151813141916115629174308
181412171610111519132915638047
191311161514101817126291543870

Centre:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

Centrum:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

1 Element of order 1:   0

3 Elements of order 2:   9   12   19

4 Elements of order 5:   3   4   7   8

12 Elements of order 10:   1   2   5   6   10   11   13   14   15   16   17   18

Commutator Subloop:   0

Associator Subloop:   0

20 Conjugacy Classes of size 1:

Automorphic Inverse Property:   HOLDS

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   20 (20, 20)


/ revised November, 2001