Right Bol Loop 16.13.2.2 of order 16


0123456789101112131415
1091110131415122436758
2901011121514131347685
3101109141213154128567
4111090151312143215876
5121314150101198674312
6141513121109107851234
7151412131090116582143
8131215149111005763421
9214387650111013121514
1034217586119014151312
1143126857100915141213
1258762341131514091110
1385671432121415901011
1467583124151213101109
1576854213141312111090

Centre:   0   9

Centrum:   0   9

Nucleus:   0   9

Left Nucleus:   0   9   14   15

Middle Nucleus:   0   9   10   11

Right Nucleus:   0   9   10   11


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

13 Elements of order 2:   1   2   3   4   5   6   7   8   9   12   13   14   15

2 Elements of order 4:   10   11

Commutator Subloop:   0   9   10   11

Associator Subloop:   0   9   10   11

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   FAILS.   (1-1)(4-1) neq (1*4)-1

Al Property:   FAILS. The left inner mapping L1,1 = (5,7,8,6)(12,14,13,15) is not an automorphism.   L1,1(5*1) neq L1,1(5)*L1,1(1)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   32 (512, 2048)


/ revised October, 2001