Group 20.11.2.0 of order 20


012345678910111213141516171819
140263859715161719181314101211
203517496817191815161011121413
325709184612131410111719181615
461082937513141011121918151716
537928061418151617191213141110
684190725319181516171112131014
759836240114101112131815161917
896471503211121314101617191518
978654312016171918151410111312
101715131219181114160743829165
111916141318151210178074362951
121817101415161311193807456219
131519111016171412184380715692
141618121117191013157438091526
151013191711121618141562907483
161114181912131715109156280734
171210151813141916112915638047
181412171610111519135629174308
191311161514101817126291543870

Centre:   0   9

Centrum:   0   9

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

1 Element of order 1:   0

11 Elements of order 2:   9   10   11   12   13   14   15   16   17   18   19

4 Elements of order 5:   3   4   7   8

4 Elements of order 10:   1   2   5   6

Commutator Subloop:   0   3   4   7   8

Associator Subloop:   0

2 Conjugacy Classes of size 1:

4 Conjugacy Classes of size 2:

2 Conjugacy Classes of size 5:

Automorphic Inverse Property:   FAILS.   (1-1)(11-1) neq (1*11)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   20 (20, 200)


/ revised November, 2001