Right Bol Loop 18.3.3.0 of order 18


01234567891011121314151617
11217011161310151484267953
21701213111614101576359841
30121716131115141095148762
41510141712011161318672395
51415101201716131139481276
61014150171213111627593184
71316111514101201762935418
81113161410150171241726539
91611131015141712053814627
10546789213110141213161715
11798321645010131412171516
12231645978141317161510110
13987132564121416151701011
14465978321131215171611010
15654897132161710011131214
16879213456171511100121413
17312564897151601110141312

Centre:   0   12   17

Centrum:   0   12   17

Nucleus:   0   12   17

Left Nucleus:   0   4   5   6   12   17

Middle Nucleus:   0   12   17

Right Nucleus:   0   12   17

1 Element of order 1:   0

3 Elements of order 2:   2   5   9

8 Elements of order 3:   10   11   12   13   14   15   16   17

6 Elements of order 6:   1   3   4   6   7   8

Commutator Subloop:   0   10   11   12   13   14   15   16   17

Associator Subloop:   0   12   17

3 Conjugacy Classes of size 1:

1 Conjugacy Class of size 6:

1 Conjugacy Class of size 9:

Automorphic Inverse Property:   FAILS.   (1-1)(5-1) neq (1*5)-1

Al Property:   FAILS. The left inner mapping L1,1 = (4,5,6)(7,9,8)(10,14,15)(11,16,13) is not an automorphism.   L1,1(4*1) neq L1,1(4)*L1,1(1)

Ar Property:   FAILS. The right inner mapping R1,4 = (1,2,3)(7,8,9)(10,14,15)(11,16,13) is not an automorphism.   R1,4(1*1) neq R1,4(1)*R1,4(1)

Right (Left, Full) Mult Group Orders:   54 (162, 972)


/ revised November, 2001