Group 27.8.3.2 of order 27


01234567891011121314151617181920212223242526
12045378610119131412161715192018262124252322
20153486711910141213171516201819222625232421
34567812012131415161710119212622232519201824
45378620113141216171511910262221242320181925
53486701214121317151691011222126252418192023
67812045315161710119131412232425191826222120
78620153416171511910141213242523201922212618
86701234517151691011121314252324182021262219
91011131412171516181920262221252324012438675
10119141213151617192018222126232425120546783
11910121314161715201819212622242523201357864
12131416171591011212622242523181920345760128
13141217151610119262221252324192018453871206
14121315161711910222126232425201819534682017
15161711910121314232425201819212622678213450
16171591011131412242523181920262221786024531
17151610119141213252324192018222126867105342
18192022212624252301253478691011141316171512
19201821262225232412034586710119121417151613
20181926222123242520145367811910131215161714
21262225232420181934586720112131417161191015
22212624252319201853478612014121316151011917
23242518192022212667801253415161791114121310
24252319201821262278612034516171510912131411
25232420181926222186720145317151611101314129
26222123242518192045367801213141215179101116

Centre:   0   1   2

Centrum:   0   1   2

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25   26

1 Element of order 1:   0

8 Elements of order 3:   1   2   9   10   11   18   19   20

18 Elements of order 9:   3   4   5   6   7   8   12   13   14   15   16   17   21   22   23   24   25   26

Commutator Subloop:   0   1   2

Associator Subloop:   0

3 Conjugacy Classes of size 1:

8 Conjugacy Classes of size 3:

Automorphic Inverse Property:   FAILS.   (3-1)(10-1) neq (3*10)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   27 (27, 243)


/ revised October, 2001