Right Bol Loop 24.13.5.0 of order 24


01234567891011121314151617181920212223
12503476981110131215141716232019222118
25410311810679171416121315222118232019
30145281161097141712161513191821202322
43052191071186151613171412202322191821
54321010911768161517131214212223181920
67118910013452181923222120121317161514
71110689104325191822232021141713151612
86791011320541232018212219131216171415
98610117451230222119202318171415131216
10981176542103212220191823161514121317
11109768235014202321181922151612141713
12141513171618212320192205321498111067
13121417161519202221182312450310679811
14151612131723221819202134012589101176
15161714121322231918212043105261097118
16171315141221182023221950234171186109
17131216151420192122231821543011768910
18232219202112161417131561081179432501
19182320212213171516121471191068501432
20191821222317131615141211710986210345
21201922231816121714151310611897123054
22212023181915141312161798761011054123
23222118192014151213171689671110345210

Centre:   0

Centrum:   0   5   6   14   20

Nucleus:   0

Left Nucleus:   0   5   6   10   14   17   20   23

Middle Nucleus:   0   2   4

Right Nucleus:   0   2   4

1 Element of order 1:   0

13 Elements of order 2:   5   6   7   8   10   12   14   15   17   19   20   21   23

2 Elements of order 3:   2   4

8 Elements of order 6:   1   3   9   11   13   16   18   22

Commutator Subloop:   0   2   4

Associator Subloop:   0   2   4

1 Conjugacy Class of size 1:

1 Conjugacy Class of size 2:

7 Conjugacy Classes of size 3:

Automorphic Inverse Property:   FAILS.   (1-1)(7-1) neq (1*7)-1

Al Property:   FAILS. The left inner mapping L1,1 = (6,9,11)(7,10,8)(12,15,17)(13,16,14)(18,20,22)(19,23,21) is not an automorphism.   L1,1(1*6) neq L1,1(1)*L1,1(6)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   48 (17496, 34992)


/ revised November, 2001