Group 20.5.1.0 of order 20


012345678910111213141516171819
116191517181312011145234681097
215171816190111413121345796108
318161915171413120112451810769
419151718161201114133512968710
517181619151114131204123107986
611012131417151916187109814235
713141101216181715198610925341
801213141115191618179761031452
914110121318171519161087642513
101213141101916181715698753124
114512391067814012131719181615
123451289106701314111918151716
135123410678912141101617191518
142345178910613110121815161917
159876104321519171816014121311
168761093215418191517130141112
177610982154315181619111301214
181098765432117161915141211013
196109871543216151718121113140

Centre:   0

Centrum:   0

Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

Left Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

Middle Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

Right Nucleus:   0   1   2   3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19

1 Element of order 1:   0

5 Elements of order 2:   15   16   17   18   19

10 Elements of order 4:   1   2   3   4   5   6   7   8   9   10

4 Elements of order 5:   11   12   13   14

Commutator Subloop:   0   11   12   13   14

Associator Subloop:   0

1 Conjugacy Class of size 1:

1 Conjugacy Class of size 4:

3 Conjugacy Classes of size 5:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   20 (20, 400)


/ revised November, 2001