As part of my enumeration of the Bol loops of order 16
with nontrivial centre, here I list just the 157 loops which are non-associative with exactly three involutions.
Please see the parent page for notation, including
my conventions for naming of loops and table entries.
I would appreciate an email
message () from you if you have any comments regarding this list.
21 loops were found in this category with |Z(L)|=4, namely
The remaining 136 loops found in this category all have |Z(L)|=2 and so the graph Comm(L) is defined. This graph is displayed as black-on-white if it has at most 10 edges; otherwise its complement (which has at most 10 edges) is displayed as white-on-black. In either case, isolated vertices are not displayed.
No. | Comm(L) | |C(L)|=2 | |C(L)|=4 | |C(L)|=6 |
---|---|---|---|---|
3 | ![]() | 106 | ||
7 | ![]() | 103 | ||
8 | ![]() | 47 | ||
11 | ![]() | 28 | ||
14 | ![]() | 37 | ||
17 | ![]() | 104 | ||
20 | ![]() | 105, 108, 110 | ||
24 | ![]() | 70 | ||
25 | ![]() | 36 | ||
28 | ![]() | 77 | ||
30 | ![]() | 96 | ||
31 | ![]() | 65 | ||
34 | ![]() | 39 | ||
36 | ![]() | 2, 3, 4, 5 | ||
37 | ![]() | 8, 111 | ||
39 | ![]() | 50 | ||
41 | ![]() | 9 | ||
45 | ![]() | 10, 11, 26 | ||
48 | ![]() | 88 | ||
49 | ![]() | 20 | ||
50 | ![]() | 31 | ||
53 | ![]() | 84 | ||
54 | ![]() | 101 | ||
56 | ![]() | 62 | ||
59 | ![]() | 97 | ||
61 | ![]() | 54 | ||
62 | ![]() | 16 | ||
64 | ![]() | 61 | ||
66 | ![]() | 27 | ||
68 | ![]() | 56 | ||
72 | ![]() | 33 | ||
74 | ![]() | 57 | ||
75 | ![]() | 45 | ||
77 | ![]() | 18 | ||
82 | ![]() | 82, 83, 95 | ||
84 | ![]() | 33 | ||
87 | ![]() | 69, 75 | ||
88 | ![]() | 23 | ||
90 | ![]() | 85 | ||
92 | ![]() | 99 | ||
95 | ![]() | 100 | ||
98 | ![]() | 53 | ||
100 | ![]() | 28, 29 | ||
105 | ![]() | 37 | ||
107 | ![]() | 11 | ||
109 | ![]() | 38 | ||
111 | ![]() | 15 | ||
112 | ![]() | 48 | ||
115 | ![]() | 73 | ||
117 | ![]() | 52 | ||
119 | ![]() | 67 | ||
120 | ![]() | 34 | ||
122 | ![]() | 14 | ||
124 | ![]() | 10 | ||
125 | ![]() | 89 | ||
127 | ![]() | 43 | ||
129 | ![]() | 46 | ||
132 | ![]() | 29 | ||
136 | ![]() | 76 | ||
138 | ![]() | 31 | ||
139 | ![]() | 40 | ||
141 | ![]() | 49 | ||
143 | ![]() | 27 | ||
146 | ![]() | 12, 98 | ||
147 | ![]() | 8, 9 | ||
149 | ![]() | 18, 40 | ||
150 | ![]() | 0, 1, 6, 7 | ||
152 | ![]() | 107 | ||
156 | ![]() | 109 | ||
157 | ![]() | 92 | ||
159 | ![]() | 26 | ||
161 | ![]() | 38 | ||
163 | ![]() | 25 | ||
165 | ![]() | 35 | ||
167 | ![]() | 74 | ||
169 | ![]() | 78 | ||
172 | ![]() | 79 | ||
174 | ![]() | 36 | ||
177 | ![]() | 55 | ||
179 | ![]() | 93 | ||
182 | ![]() | 30 | ||
184 | ![]() | 44 | ||
185 | ![]() | 80, 87 | ||
187 | ![]() | 13, 59 | ||
193 | ![]() | 35 | ||
195 | ![]() | 39, 51 | ||
200 | ![]() | 21 | ||
202 | ![]() | 94 | ||
204 | ![]() | 58 | ||
206 | ![]() | 32 | ||
208 | ![]() | 63 | ||
210 | ![]() | 41 | ||
212 | ![]() | 0, 1 | ||
215 | ![]() | 60 | ||
216 | ![]() | 34 | ||
218 | ![]() | 19 | ||
219 | ![]() | 32 | ||
222 | ![]() | 19 | ||
224 | ![]() | 91, 102 | ||
225 | ![]() | 30 | ||
227 | ![]() | 86 | ||
230 | ![]() | 64 | ||
232 | ![]() | 72 | ||
233 | ![]() | 42 | ||
235 | ![]() | 90 | ||
237 | ![]() | 68 | ||
239 | ![]() | 17 | ||
241 | ![]() | 22 | ||
246 | ![]() | 20, 24 | ||
248 | ![]() | 66 | ||
249 | ![]() | 81 | ||
251 | ![]() | 71 |