Right Bol Loop 16.3.4.26 of order 16


0123456789101112131415
1032674598131211101514
2457160310118151491213
3675041213129141581110
4210537611101589141312
5764302114151213101189
6301725412131498151011
7546213015141110131298
8910131114121557632401
9813101215111475423610
1011141591281363510724
1110981413151236157042
1213891510141124075163
1312151481191042701536
1415121113810901246357
1514111210913810364275

Centre:   0   5

Centrum:   0   5   8   14

Nucleus:   0   5   9   15

Left Nucleus:   0   1   5   7   8   9   14   15

Middle Nucleus:   0   5   9   15

Right Nucleus:   0   5   9   15


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

3 Elements of order 2:   1   5   7

12 Elements of order 4:   2   3   4   6   8   9   10   11   12   13   14   15

Commutator Subloop:   0   5

Associator Subloop:   0   5

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (2-1)(9-1) neq (2*9)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   32 (64, 128)


/ revised October, 2001