Right Bol Loop 16.3.2.109 of order 16


0123456789101112131415
1230764591514108111312
2301547611109813121514
3012675410141591181213
4756201313118121415910
5647023112811131514109
6475130214131215109811
7564312015121314910118
8911101312151424503176
9111081514121332016754
1089111415131210237645
1110891213141505421367
1214131581191046752013
1315121411810957640231
1413151291011871365420
1512141310981163174502

Centre:   0   2

Centrum:   0   2

Nucleus:   0   2

Left Nucleus:   0   2   6   7

Middle Nucleus:   0   2

Right Nucleus:   0   2


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

3 Elements of order 2:   2   6   7

12 Elements of order 4:   1   3   4   5   8   9   10   11   12   13   14   15

Commutator Subloop:   0   2   6   7

Associator Subloop:   0   2   6   7

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   FAILS.   (1-1)(9-1) neq (1*9)-1

Al Property:   FAILS. The left inner mapping L1,8 = (4,5)(6,7)(8,15)(9,12)(10,13)(11,14) is not an automorphism.   L1,8(4*8) neq L1,8(4)*L1,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (4096, 16384)


/ revised October, 2001