Right Bol Loop 16.3.2.73 of order 16


0123456789101112131415
1036725498111310121514
2341670510128914151113
3274501611139158141012
4765032115141312111098
5610347212101481591311
6507214313111514981210
7452163014151210131189
8910121511131447635210
9811101413121574562301
1011151413981263417052
1110148121591352740163
1213915118141036104725
1312891014151125071436
1415121391011810326547
1514131181210901253674

Centre:   0   4

Centrum:   0   4

Nucleus:   0   4

Left Nucleus:   0   4   9   14

Middle Nucleus:   0   4

Right Nucleus:   0   4


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

3 Elements of order 2:   1   4   7

12 Elements of order 4:   2   3   5   6   8   9   10   11   12   13   14   15

Commutator Subloop:   0   4

Associator Subloop:   0   4

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (2-1)(9-1) neq (2*9)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (128, 512)


/ revised October, 2001