Right Bol Loop 16.3.2.19 of order 16


0123456789101112131415
1032674598151211141310
2457160311121481015913
3675041214131110891512
4210537612111391510814
5764302115109131411128
6301725413141215981011
7546213010158141312119
8101114121513957164230
9151411131012875032461
1081213119141510546327
1114151091381263457012
1213981514101136275104
1312891011151424301576
1411101581291342610753
1591312148111001723645

Centre:   0   5

Centrum:   0   5

Nucleus:   0   5

Left Nucleus:   0   5

Middle Nucleus:   0   5

Right Nucleus:   0   5


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

3 Elements of order 2:   1   5   7

12 Elements of order 4:   2   3   4   6   8   9   10   11   12   13   14   15

Commutator Subloop:   0   5

Associator Subloop:   0   5

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (2-1)(9-1) neq (2*9)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   128 (128, 1024)


/ revised October, 2001