Right Bol Loop 16.3.4.10 of order 16


0123456789101112131415
1230567498111014151213
2301674511109813121514
3012745610118915141312
4567012315131214109118
5674123013151412118109
6745230114121315910811
7456301212141513811910
8121113159141047561320
9151014131112856470231
1014915128131174652013
1113812141015965743102
1211138101591430216457
1381211914101512034675
1491510111281321307546
1510149813111203125764

Centre:   0   2

Centrum:   0   2   4   6

Nucleus:   0   2

Left Nucleus:   0   2   4   6

Middle Nucleus:   0   2

Right Nucleus:   0   2


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

3 Elements of order 2:   2   4   6

12 Elements of order 4:   1   3   5   7   8   9   10   11   12   13   14   15

Commutator Subloop:   0   2   4   6

Associator Subloop:   0   2   4   6

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   HOLDS

Al Property:   FAILS. The left inner mapping L1,8 = (4,6)(5,7)(8,15)(9,13)(10,12)(11,14) is not an automorphism.   L1,8(4*8) neq L1,8(4)*L1,8(8)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 4096)


/ revised October, 2001