Right Bol Loop 16.3.2.12 of order 16


0123456789101112131415
1036725498151311141210
2341670511121381091514
3274501612111410158913
4765032115109141312118
5610347213141198151012
6507214314131215910811
7452163010158121411139
8101112151314947163520
9151214101113874032651
1081311914121510456237
1113159141081265347102
1214101513891156214073
1311981215101432670415
1412810119151323501746
1591413812111001725364

Centre:   0   4

Centrum:   0   4

Nucleus:   0   4

Left Nucleus:   0   3   4   5

Middle Nucleus:   0   4

Right Nucleus:   0   4


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

3 Elements of order 2:   1   4   7

12 Elements of order 4:   2   3   5   6   8   9   10   11   12   13   14   15

Commutator Subloop:   0   4

Associator Subloop:   0   4

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (2-1)(9-1) neq (2*9)-1

Al Property:   HOLDS (i.e. every left inner mapping La,b is an automorphism)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (128, 512)


/ revised October, 2001