Right Bol Loop 16.3.2.3 of order 16


0123456789101112131415
1250374691413121110158
2571063413101589141112
3014627510111498151213
4306715211129141581310
5762140312138151491011
6437502115811101312914
7645231014151213101189
8101191315121405641273
9810131211141514057362
1011158914131230214657
1115141081291346375021
1213914158111057462130
1398121410151121503746
1412131511910873126405
1514121110138962730514

Centre:   0   7

Centrum:   0   7

Nucleus:   0   7

Left Nucleus:   0   7

Middle Nucleus:   0   7

Right Nucleus:   0   7


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

3 Elements of order 2:   7   8   14

4 Elements of order 4:   2   4   11   13

8 Elements of order 8:   1   3   5   6   9   10   12   15

Commutator Subloop:   0   2   4   7

Associator Subloop:   0   2   4   7

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   HOLDS

Al Property:   FAILS. The left inner mapping L1,1 = (8,13)(9,10)(11,14)(12,15) is not an automorphism.   L1,1(1*9) neq L1,1(1)*L1,1(9)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (4096, 16384)


/ revised October, 2001