Right Bol Loop 16.3.2.9 of order 16


0123456789101112131415
1250374698111213101514
2571063413101589141112
3014627510138914151211
4306715211129141581310
5762140312111415891013
6437502115141310111298
7645231014151213101189
8121115139101476345201
9141011121381567452310
1013151498111254017632
1191412810151323176045
1211981514131032760154
1315810141291145601723
1410139111512801523476
1581213101114910234567

Centre:   0   7

Centrum:   0   7

Nucleus:   0   7

Left Nucleus:   0   7

Middle Nucleus:   0   7

Right Nucleus:   0   7


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

3 Elements of order 2:   7   10   12

8 Elements of order 4:   2   4   8   9   11   13   14   15

4 Elements of order 8:   1   3   5   6

Commutator Subloop:   0   2   4   7

Associator Subloop:   0   2   4   7

2 Conjugacy Classes of size 1:

1 Conjugacy Class of size 2:

3 Conjugacy Classes of size 4:

Automorphic Inverse Property:   FAILS.   (1-1)(9-1) neq (1*9)-1

Al Property:   FAILS. The left inner mapping L1,1 = (8,11)(9,12)(10,15)(13,14) is not an automorphism.   L1,1(1*9) neq L1,1(1)*L1,1(9)

Ar Property:   FAILS. The right inner mapping R1,8 = (1,3)(2,4)(5,6)(8,11)(9,15)(13,14) is not an automorphism.   R1,8(1*8) neq R1,8(1)*R1,8(8)

Right (Left, Full) Mult Group Orders:   64 (4096, 16384)


/ revised October, 2001