Bol Loops of Order 16 with 13 Involutions


As part of my enumeration of the Bol loops of order 16 with nontrivial centre, here I list just those which are non-associative with exactly thirteen involutions. Please see the parent page for notation, including my conventions for naming of loops and table entries. I would appreciate an email message () from you if you have any comments regarding this list.

All 117 loops in this list have |Z(L)|=2 and so the graph Comm(L) is defined. This graph is displayed as black-on-white if it has at most 10 edges; otherwise its complement (which has at most 10 edges) is displayed as white-on-black. In either case, isolated vertices are not displayed.

No. Comm(L) |C(L)|=2 |C(L)|=4 |C(L)|=6 |C(L)|=8
2       0
6   2    
9 75      
10 0      
12 44      
13 2      
15 97      
16 22      
19 14      
23 21      
26 83      
27 61      
29 17      
32 91      
33 1      
35 81      
40 59      
44 6, 48      
46 98      
47 40      
51 78      
52 80      
55 103      
57 64      
58   7    
60   10    
63 36      
65 26      
67 63      
69 56      
71 38      
73 8      
76 42      
78 92      
81 3, 23, 79      
85 82      
86   1, 5    
89 95      
91 85      
93 101      
94   3    
99 52      
101 60, 71      
104 31      
106 72      
108 84      
110 47      
113 89      
114     0  
116 69      
118 13      
121 46      
123 15      
126 39      
128 99      
130 66      
131 41      
135 32      
137 93      
140 43      
142 86      
144 94      
145 4, 16      
158 74      
160 65      
162 73      
164 12      
166 35      
168   0    
170 68      
173 54      
175 18      
176   6    
180 102      
181 29      
183 62      
186 45, 96      
188 19, 20      
194 77      
196 37, 49      
199 34      
201 27      
205 51      
207 50      
209 55      
211 67      
213 11, 100      
214   4    
217 76      
220 53      
221   9    
223 5, 28      
226 70      
228 24      
229 30      
231 25      
234 9      
236   8    
238 57      
240 58      
242 87      
245 7, 10      
247 88      
250 33      
252 90      


/ revised November, 2001