As part of my enumeration of the Bol loops of order 16
with nontrivial centre, here I list just those which are non-associative with exactly thirteen involutions.
Please see the parent page for notation, including
my conventions for naming of loops and table entries.
I would appreciate an email
message () from you if you have any comments regarding this list.
All 117 loops in this list have |Z(L)|=2 and so the graph Comm(L) is defined. This graph is displayed as black-on-white if it has at most 10 edges; otherwise its complement (which has at most 10 edges) is displayed as white-on-black. In either case, isolated vertices are not displayed.
No. | Comm(L) | |C(L)|=2 | |C(L)|=4 | |C(L)|=6 | |C(L)|=8 |
---|---|---|---|---|---|
2 | ![]() | 0 | |||
6 | ![]() | 2 | |||
9 | ![]() | 75 | |||
10 | ![]() | 0 | |||
12 | ![]() | 44 | |||
13 | ![]() | 2 | |||
15 | ![]() | 97 | |||
16 | ![]() | 22 | |||
19 | ![]() | 14 | |||
23 | ![]() | 21 | |||
26 | ![]() | 83 | |||
27 | ![]() | 61 | |||
29 | ![]() | 17 | |||
32 | ![]() | 91 | |||
33 | ![]() | 1 | |||
35 | ![]() | 81 | |||
40 | ![]() | 59 | |||
44 | ![]() | 6, 48 | |||
46 | ![]() | 98 | |||
47 | ![]() | 40 | |||
51 | ![]() | 78 | |||
52 | ![]() | 80 | |||
55 | ![]() | 103 | |||
57 | ![]() | 64 | |||
58 | ![]() | 7 | |||
60 | ![]() | 10 | |||
63 | ![]() | 36 | |||
65 | ![]() | 26 | |||
67 | ![]() | 63 | |||
69 | ![]() | 56 | |||
71 | ![]() | 38 | |||
73 | ![]() | 8 | |||
76 | ![]() | 42 | |||
78 | ![]() | 92 | |||
81 | ![]() | 3, 23, 79 | |||
85 | ![]() | 82 | |||
86 | ![]() | 1, 5 | |||
89 | ![]() | 95 | |||
91 | ![]() | 85 | |||
93 | ![]() | 101 | |||
94 | ![]() | 3 | |||
99 | ![]() | 52 | |||
101 | ![]() | 60, 71 | |||
104 | ![]() | 31 | |||
106 | ![]() | 72 | |||
108 | ![]() | 84 | |||
110 | ![]() | 47 | |||
113 | ![]() | 89 | |||
114 | ![]() | 0 | |||
116 | ![]() | 69 | |||
118 | ![]() | 13 | |||
121 | ![]() | 46 | |||
123 | ![]() | 15 | |||
126 | ![]() | 39 | |||
128 | ![]() | 99 | |||
130 | ![]() | 66 | |||
131 | ![]() | 41 | |||
135 | ![]() | 32 | |||
137 | ![]() | 93 | |||
140 | ![]() | 43 | |||
142 | ![]() | 86 | |||
144 | ![]() | 94 | |||
145 | ![]() | 4, 16 | |||
158 | ![]() | 74 | |||
160 | ![]() | 65 | |||
162 | ![]() | 73 | |||
164 | ![]() | 12 | |||
166 | ![]() | 35 | |||
168 | ![]() | 0 | |||
170 | ![]() | 68 | |||
173 | ![]() | 54 | |||
175 | ![]() | 18 | |||
176 | ![]() | 6 | |||
180 | ![]() | 102 | |||
181 | ![]() | 29 | |||
183 | ![]() | 62 | |||
186 | ![]() | 45, 96 | |||
188 | ![]() | 19, 20 | |||
194 | ![]() | 77 | |||
196 | ![]() | 37, 49 | |||
199 | ![]() | 34 | |||
201 | ![]() | 27 | |||
205 | ![]() | 51 | |||
207 | ![]() | 50 | |||
209 | ![]() | 55 | |||
211 | ![]() | 67 | |||
213 | ![]() | 11, 100 | |||
214 | ![]() | 4 | |||
217 | ![]() | 76 | |||
220 | ![]() | 53 | |||
221 | ![]() | 9 | |||
223 | ![]() | 5, 28 | |||
226 | ![]() | 70 | |||
228 | ![]() | 24 | |||
229 | ![]() | 30 | |||
231 | ![]() | 25 | |||
234 | ![]() | 9 | |||
236 | ![]() | 8 | |||
238 | ![]() | 57 | |||
240 | ![]() | 58 | |||
242 | ![]() | 87 | |||
245 | ![]() | 7, 10 | |||
247 | ![]() | 88 | |||
250 | ![]() | 33 | |||
252 | ![]() | 90 |