Right Bol Loop 16.13.4.0 of order 16


0123456789101112131415
1091013121115145362487
2901115141013128471356
3101101213914156154278
4111091415012137283165
5121413100151191638724
6131512010149113517842
7151314911120104826531
8141215119131002745613
9214387650111014151213
1034126587110913121514
1143217856109015141312
1258671342141315010911
1367583124151214100119
1485762431121513911010
1576854213131412119100

Centre:   0   14

Centrum:   0   10   14   15

Nucleus:   0   14

Left Nucleus:   0   9   10   11   12   13   14   15

Middle Nucleus:   0   14

Right Nucleus:   0   14


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

13 Elements of order 2:   1   2   3   5   7   8   9   10   11   12   13   14   15

2 Elements of order 4:   4   6

Commutator Subloop:   0   14

Associator Subloop:   0   14

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(5-1) neq (1*5)-1

Al Property:   FAILS. The left inner mapping L1,1 = (2,5)(9,12) is not an automorphism.   L1,1(2*3) neq L1,1(2)*L1,1(3)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   32 (1024, 2048)


/ revised October, 2001