Right Bol Loop 16.13.4.5 of order 16


0123456789101112131415
1091011121513142354786
2901215101114131463875
3101109131412154172568
4111013140915123281657
5121590141310116718342
6151214139011105827431
7131411101512098536124
8141315121110907645213
9215634870111015141312
1034127856110913121514
1143781265109014151213
1256218734151314010119
1378436512141215100911
1487654321131512119010
1565872143121413911100

Centre:   0   14

Centrum:   0   10   14   15

Nucleus:   0   14

Left Nucleus:   0   10   14   15

Middle Nucleus:   0   14

Right Nucleus:   0   14


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

13 Elements of order 2:   1   2   3   6   7   8   9   10   11   12   13   14   15

2 Elements of order 4:   4   5

Commutator Subloop:   0   14

Associator Subloop:   0   14

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(5-1) neq (1*5)-1

Al Property:   FAILS. The left inner mapping L1,1 = (4,5)(11,12) is not an automorphism.   L1,1(2*3) neq L1,1(2)*L1,1(3)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 2048)


/ revised October, 2001