Right Bol Loop 16.13.2.18 of order 16


0123456789101112131415
1091512131110145346287
2901215141011138437156
3101214911130156125478
4111513010149127218365
5131411100151291673824
6121091415013113581742
7151101312914104852631
8141310119121502764513
9214387650111015141312
1036154287110913121514
1147283156109014151213
1263517824151314010119
1358671342141215100911
1485762431131512119010
1574826513121413911100

Centre:   0   14

Centrum:   0   14

Nucleus:   0   14

Left Nucleus:   0   9   13   14

Middle Nucleus:   0   14

Right Nucleus:   0   14


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

13 Elements of order 2:   1   2   4   5   6   8   9   10   11   12   13   14   15

2 Elements of order 4:   3   7

Commutator Subloop:   0   14

Associator Subloop:   0   14

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(4-1) neq (1*4)-1

Al Property:   FAILS. The left inner mapping L1,1 = (2,5)(3,7)(4,6)(9,13)(10,15)(11,12) is not an automorphism.   L1,1(2*3) neq L1,1(2)*L1,1(3)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 2048)


/ revised October, 2001