Right Bol Loop 16.13.2.64 of order 16


0123456789101112131415
1091312111415106345827
2915111013014127483516
3101201491113154162758
4111014015131293217685
5121391501011148671234
6140121310159111538472
7151410111290132854361
8131115914121005726143
9275831640111310121514
1035726481120149151113
1143271856139015141012
1258617342101415091311
1384162537111591401210
1461438725151210131109
1576854213141312111090

Centre:   0   15

Centrum:   0   15

Nucleus:   0   15

Left Nucleus:   0   15

Middle Nucleus:   0   15

Right Nucleus:   0   15


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

13 Elements of order 2:   1   3   4   5   7   8   9   10   11   12   13   14   15

2 Elements of order 4:   2   6

Commutator Subloop:   0   15

Associator Subloop:   0   15

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   FAILS. The left inner mapping L1,1 = (2,6)(3,8)(4,5)(9,14)(10,13)(11,12) is not an automorphism.   L1,1(2*3) neq L1,1(2)*L1,1(3)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   128 (1024, 2048)


/ revised October, 2001