Right Bol Loop 16.13.2.12 of order 16


0123456789101112131415
1091011131215142356487
2914111510013121478365
3101301291114154165278
4111090141512133287156
5131512140109117613842
6120131015141198531724
7151114912130105824631
8141215131191006742513
9284731560111014151213
1035162487110913121514
1143218765109015141312
1261537842141315010911
1357681324151214100119
1486754231121513911010
1574826513131412119100

Centre:   0   14

Centrum:   0   14

Nucleus:   0   14

Left Nucleus:   0   11   13   14

Middle Nucleus:   0   14

Right Nucleus:   0   14


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

13 Elements of order 2:   1   3   4   5   7   8   9   10   11   12   13   14   15

2 Elements of order 4:   2   6

Commutator Subloop:   0   14

Associator Subloop:   0   14

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   FAILS. The left inner mapping L1,1 = (4,5)(11,13) is not an automorphism.   L1,1(2*3) neq L1,1(2)*L1,1(3)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 2048)


/ revised October, 2001