Right Bol Loop 16.13.2.25 of order 16


0123456789101112131415
1014101211915136345827
2901113101514127483516
3101201491113154162758
4111091501312143217685
5121314015101198671234
6141512101309111538472
7159131112140102854361
8131115914121005726143
9274381650111310121514
1034126587120149151113
1148217356139015141012
1253671842101415091311
1385762431111591401210
1461583724151210131109
1576854213141312111090

Centre:   0   15

Centrum:   0   15

Nucleus:   0   15

Left Nucleus:   0   15

Middle Nucleus:   0   15

Right Nucleus:   0   15


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets.


1 Element of order 1:   0

13 Elements of order 2:   1   2   3   6   7   8   9   10   11   12   13   14   15

2 Elements of order 4:   4   5

Commutator Subloop:   0   15

Associator Subloop:   0   15

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(5-1) neq (1*5)-1

Al Property:   FAILS. The left inner mapping L1,1 = (4,5)(11,12) is not an automorphism.   L1,1(2*3) neq L1,1(2)*L1,1(3)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   128 (1024, 2048)


/ revised October, 2001