Right Bol Loop 16.13.2.50 of order 16


0123456789101112131415
1091211101513142563784
2913111015121401654873
3101509131412114781562
4111014091315123872651
5121113140910156127348
6151291314011105218437
7131410151211098345126
8140151211109137436215
9276345810111015141312
1036721854110913121514
1143218765109014151213
1254187236151314010119
1378563412141215100911
1481456327131512119010
1565872143121413911100

Centre:   0   13

Centrum:   0   13

Nucleus:   0   13

Left Nucleus:   0   11   13   15

Middle Nucleus:   0   13

Right Nucleus:   0   13


Comm(L):   This graph has as its 7 vertices the nontrivial cosets of the centre. Edges represent non-commuting cosets. Here we print (in reverse video) the complementary graph, in which edges represent commuting cosets.


1 Element of order 1:   0

13 Elements of order 2:   1   3   4   5   6   7   9   10   11   12   13   14   15

2 Elements of order 4:   2   8

Commutator Subloop:   0   13

Associator Subloop:   0   13

2 Conjugacy Classes of size 1:

7 Conjugacy Classes of size 2:

Automorphic Inverse Property:   FAILS.   (1-1)(3-1) neq (1*3)-1

Al Property:   FAILS. The left inner mapping L1,1 = (4,6)(11,15) is not an automorphism.   L1,1(2*3) neq L1,1(2)*L1,1(3)

Ar Property:   HOLDS (i.e. every right inner mapping Ra,b is an automorphism)

Right (Left, Full) Mult Group Orders:   64 (1024, 2048)


/ revised October, 2001