

Eric Moorhouse University of Wyoming

Nets

A k-net of order n has

- n^2 points;
- nk lines, each with n points.

There are k parallel classes of n lines each.

Two lines from different parallel classes meet in a unique point.

Affine plane of order 3 = 4-net of order 3

E.g. 1-net of order 3 2-net of order 3

3-net of order 3

Affine plane of order n = (n+1)-net of order n

- n^2 points;
- n(n+1) lines (n+1) parallel classes of n lines each).

Any 2 points are joined by exactly one line. Any two non-parallel lines meet in a unique point.

Open Questions

- 1. Given an affine (or projective) plane of order n, must n be a prime power?
- 2. Must every affine (or projective) plane of prime order p be classical?

Affine plane of order n = (n+1)-net of order n

- n^2 points;
- n(n+1) lines (n+1) parallel classes of n lines each).

Any 2 points are joined by exactly one line. Any two non-parallel lines meet in a unique point.

Open Questions

- 1. Given an affine (or projective) plane of order n, must n be a prime power?
- 2. Must every affine (or projective) plane of prime order p be classical?

One conceivable approach uses ranks of nets...

rank of a net = rank of its incidence matrix.

p-rank of a net = rank of its incidence matrix over $\mathbb{F}_p = \{0, 1, 2, ..., p$ -1 $\}$

1-net of order 3

2-net of order 3

rank₃

2 = 5

Conjecture: Any *k*-net of prime order *p* has *p*-rank *at least*

 $p + (p-1) + (p-2) + ... + (p-k+1) = pk - \frac{1}{2}k(k-1)$ for k = 1, 2, 3, ..., p+1.

Moreover, nets whose p-rank achieves this lower bound are `classical'.

I.e. the incidence matrix of any k-net of order p has nullity *at most*

 $\frac{1}{2}k(k-1).$

Rephrase:

 $\mathfrak{P} = \text{point set}, |\mathfrak{P}| = p^2.$ Let i = 1, 2, ..., k label the parallel class.

Say point $P \in \mathfrak{P}$ lies in the j^{th} line of class i, $j \in \{0, 1, 2, ..., p\text{-}1\}$. Define $u_i(P) = j$.

This gives 'coordinate functions' $u_i : \mathfrak{P} \to F = \mathbb{F}_p$.

Any two coordinates $u_i(P)$, $u_j(P)$ (for $i \neq j$) determine $P \in \mathfrak{P}$ uniquely.

The *null space* of the net is the space \mathcal{V} of k-tuples $(f_1, f_2, ..., f_k)$ of functions $F \to F$ such that $f_1(u_1(P)) + f_2(u_2(P)) + ... + f_k(u_k(P)) = 0$ for every point $P \in \mathfrak{P}$. Conjecture: dim $\mathcal{V} \leq \frac{1}{2}k(k-1)$. We can replace any such k-tuple $(f_1, f_2, ..., f_k)$ by $(f_1+c_1, f_2+c_2, ..., f_k+c_k)$ where the constants $c_1+c_2+...+c_k=0.$

So replace \mathcal{V} by the subspace \mathcal{V}_0 consisting of all ktuples $(f_1, f_2, ..., f_k)$ of functions $F \to F$ such that $f_1(u_1(P)) + f_2(u_2(P)) + ... + f_k(u_k(P)) = 0$ for every point $P \in \mathfrak{P}$, and $f_i(0)=0$. Conjecture: dim $\mathcal{V}_0 \leq \frac{1}{2}(k-1)(k-2)$.

The *null space* of the net is the space \mathcal{V} of k-tuples $(f_1, f_2, ..., f_k)$ of functions $F \to F$ such that $f_1(u_1(P)) + f_2(u_2(P)) + ... + f_k(u_k(P)) = 0$ for every point $P \in \mathfrak{P}$. Conjecture: dim $\mathcal{V} \leq \frac{1}{2}k(k-1)$. We can replace any such k-tuple $(f_1, f_2, ..., f_k)$ by $(f_1+c_1, f_2+c_2, ..., f_k+c_k)$ where the constants $c_1+c_2+...+c_k=0.$

So replace \mathcal{V} by the subspace \mathcal{V}_0 consisting of all ktuples $(f_1, f_2, ..., f_k)$ of functions $F \to F$ such that $f_1(u_1(P)) + f_2(u_2(P)) + ... + f_k(u_k(P)) = 0$ for every point $P \in \mathfrak{P}$, and $f_i(0)=0$. Conjecture: dim $\mathcal{V}_0 \leq \frac{1}{2}(k-1)(k-2)$.

Note: An algebraic plane curve of degree k has genus $\leq \frac{1}{2}(k-1)(k-2)$.

This is not mere coincidence...

k = degree of curve	real curve	genus g ≤ ¹ / ₂ (k-1)(k-2)	Riemann surface
1	line	0	

k = degree of curve	real curve	genus g ≤ ¹ / ₂ (k-1)(k-2)	Riemann surface
1	line	0	
2	conic	0	

k = degree of curve	real curve	genus g ≤ ¹ / ₂ (k-1)(k-2)	Riemann surface
1	line	0	
2	conic	0	
3	elliptic curve	1	

k = degree of curve	real curve	genus $g \le \frac{1}{2}(k-1)(k-2)$	Riemann surface
1	line	0	
2	conic	0	
3	elliptic curve	1	
3	singular cubic	0	

Take $F = \mathbb{R}$ or \mathbb{C} . Consider functions $u_i: F^2 \rightarrow F$, i=1,2,...,k. level curves $u_1 = constant$

Assume level curves meet transversely, i.e. ∇u_i , ∇u_j are linearly independent for $i \neq j$.

V.V. Goldberg 1936–

approx. 100 publications on *web geometry* by V.V. Goldberg & M.A. Akivis $F = \mathbb{R} \text{ or } \mathbb{C}.$

coordinate functions u_i : $F^2 \rightarrow F$, i=1,2,...,k.

 \mathcal{V}_0 = vector space of all k-tuples $(f_1, f_2, ..., f_k)$ of smooth functions F o F such that $f_1(u_1(P)) + f_2(u_2(P)) + ... + f_k(u_k(P)) = 0$ for every point $P \in F^2$, and $f_i(0)=0$.

Theorem (Blaschke et al.) dim $\mathcal{V}_0 \leq \frac{1}{2}(k-1)(k-2)$. If equality holds then the k-web is `algebraic'; it arises from an algebraic curve of maximal genus.

Note: dim \mathcal{V}_0 is called the *rank* of the *k*-web.

W. Blaschke 1885–1962

W. Blaschke & G. Bol, *Geometrie der Gewebe*, 1938

Theorem (Blaschke et al.) dim $\mathcal{V}_0 \leq \frac{1}{2}(k-1)(k-2)$. If equality holds then the k-web is `algebraic'; it arises from an algebraic curve of maximal genus.

Note: dim \mathcal{V}_0 is called the *rank* of the *k*-web.

N. Abel 1802–1829

Abel's Theorem is the foundation for the Theorem of Blaschke et al.

Chern & Griffiths: Numerous publications on Abel's Theorem and webs

P. Griffiths 1938-

S.S. Chern 1911–

J. Little 1956–

Little's dissertation, under B. Saint-Donat, and several subsequent papers, concern webs of maximal rank.

In particular he proved an analogue (1984) over algebraically closed fields of positive characteristic.

How does an algebraic curve give rise to a web?

Consider an algebraic curve \mathcal{C} of degree k in the plane.

A typical line ℓ meets C in k points.

 P_2

 O_2

 P_1

 O_1

Web '*point'* set $\mathfrak{P} = \{$ lines ℓ' close to $\ell \}$

Web 'lines' of class i are points of \mathcal{C} close to O_i .

 P_3

 $O_{\mathbf{3}}$

 O_k

P_k

Consider an algebraic curve \mathcal{C} of degree k in the plane..

A typical line ℓ meets C in k points.

 $P_2 = O_2$

 O_1

Web '*point'* set $\mathfrak{P} = \{$ lines ℓ' close to $\ell \}$

Web '*lines'* of class i are points of \mathcal{C} close to O_i .

 $O_{\mathfrak{s}}$

 $P_{\mathbf{3}}$

 O_k

 P_{k}

If $\ell' \cap \mathcal{C} = \ell \cap \mathcal{C}$, interpret ℓ' and ℓ as 'points' joined by a 'line' of class i.

Consider an algebraic curve C of degree k in the plane.

A typical line ℓ meets C in k points.

 P_2

 O_{2}

 O_1

Web '*point'* set $\mathfrak{P} = \{$ lines ℓ' close to $\ell \}$

Web 'lines' of class i are points of \mathcal{C} close to O_i . Parameterise points of \mathcal{C} near O_i . Define $u_i(\ell')$ = parameter value of $P_i = \ell' \cap \mathcal{C}$

 P_3

t = 1

t=2

 O_{k}

 P_{k}

Abel's Theorem. If ω is any holomorphic 1-form on \mathcal{C} , then

Define $u_i(\ell')$ = parameter value of $\ell' \cap C$

Abel's Theorem. If ω is any holomorphic 1-form on C, then

Special case k=4

A 4-web of maximal rank

or

a 4-net of order *p*, and *p*-rank attaining the conjectured lower bound *yields:*

Special case k=4

A 4-web of maximal rank

or

a 4-*net* of order p, and p-rank attaining the conjectured lower bound

yields:

Special case k=4

A 4-web of maximal rank

or

a 4-*net* of order p, and p-rank attaining the conjectured lower bound

yields:

Two curves C_1 , C_2 in 3-space generate surface

 $\mathcal{S} = \mathcal{C}_1 + \mathcal{C}_2$ $= \mathcal{C}_3 + \mathcal{C}_4$

Example

$${\mathcal S}$$
 : $z=cx^2-y^2$

 \mathcal{C}_2

 \mathcal{C}_4

 $\mathcal{C}_{\mathbf{3}}$

 \mathcal{C}_1

$$C_{1} = \{ (x, 0, cx^{2}) : x \in F \}$$

$$C_{2} = \{ (0, y, -y^{2}) : y \in F \}$$

$$C_{3} = \{ (s, cs, c(1-c)s^{2}) : s \in F \}$$

$$C_{4} = \{ (t, t, (c-1)t^{2}) : t \in F \}$$

Two curves C_1 , C_2 in 3-space generate surface

$$\mathcal{S} = \mathcal{C}_1 + \mathcal{C}_2$$

 $= \mathcal{C}_3 + \mathcal{C}_4$

Two curves C_1 , C_2 in 3-space generate surface

$$\mathcal{S} = \mathcal{C}_1 + \mathcal{C}_2$$

= $\mathcal{C}_2 + \mathcal{C}_4$

Example 3

$$C_{1} = \{ (x, 0, \frac{c}{2}x^{2} + (c+1)x) : x \in \mathbb{R} \}$$
$$C_{2} = \{ (\frac{1}{c}(1-e^{-cs}), s, \frac{1}{2c}(1-e^{-2cs})) : s \in \mathbb{R} \}$$

 $\begin{array}{l} \mathcal{C}_{3} = \{(0,y,e^{-cy}-1) : y \in \mathbb{R} \} \\ \\ \mathcal{C}_{4} = \{(t,\frac{1}{c}\ln(1+t),\frac{c}{2}t^{2}+ct) : t > -1 \} \end{array}$

Two curves C_1 , C_2 in 3-space generate surface

$$\mathcal{S} = \mathcal{C}_1 + \mathcal{C}_2$$

 $= \mathcal{C}_3 + \mathcal{C}_4$

 $z = (x+1)e^{-cy}-1 + \frac{c}{2}x^2 + cx$

 \mathcal{C}_2

 $\mathcal{C}_{\mathbf{3}}$

 \mathcal{C}_1

S:

 \mathcal{C}_4

 \mathcal{C}_2

 \mathcal{S}

 \mathcal{C}_4

 $\mathcal{C}_{\mathbf{3}}$

 \mathcal{C}_1

Lie (1882) first considered such a *double translation surface.*

Two curves C_1 , C_2 in 3-space generate surface

$$\mathcal{S} = \mathcal{C}_1 + \mathcal{C}_2$$

 $= \mathcal{C}_3 + \mathcal{C}_4$

 \mathcal{C}_2

S

 \mathcal{C}_4

Theorem (Lie, 1882). Consider any double translation surface in \mathbb{C}^3 , as below. There is an algebraic curve \mathcal{C} of degree 4 in the plane at infinity, such that all tangent lines to \mathcal{C}_1 , \mathcal{C}_2 , \mathcal{C}_3 and \mathcal{C}_4 all pass through \mathcal{C} .

 \mathcal{C}_1

Two curves C_1 , C_2 in 3-space generate surface

$$\mathcal{S} = \mathcal{C}_1 + \mathcal{C}_2$$

 $= \mathcal{C}_3 + \mathcal{C}_4$

Theorem (Lie, 1882). Consider any double translation surface in \mathbb{C}^3 , as below. There is an algebraic curve Cof degree 4 in the plane at infinity, such that all tangent lines to C_1 , C_2 , C_3 and C_4 all pass through C.

Conversely, *every* algebraic curve Cof degree 4 and algebraic genus 3 in the plane at infinity determines a double translation surface S in this way.

Chern called this result a *'true tour de force'.*

Lie was not thrilled.

H. Poincaré 1854–1912

Poincaré published sequels (1895, 1901) to Lie's paper, observing the connection to Abel's Theorem.

Example 1

$${\mathcal S}$$
 : $z=cx^2-y^2$

 \mathcal{C}_2

 \mathcal{C}_4

 $\mathcal{C}_{\mathbf{3}}$

 \mathcal{C}_1

$$C_{1} = \{ (x, 0, cx^{2}) : x \in F \}$$

$$C_{2} = \{ (0, y, -y^{2}) : y \in F \}$$

$$C_{3} = \{ (s, cs, c(1-c)s^{2}) : s \in F \}$$

$$C_{4} = \{ (t, t, (c-1)t^{2}) : t \in F \}$$

Two curves C_1 , C_2 in 3-space generate surface

$$\mathcal{S} = \mathcal{C}_1 + \mathcal{C}_2$$

= $\mathcal{C}_3 + \mathcal{C}_4$

Example 1 $C_1 = \{(x, 0, cx^2) : x \in F\}$ $S : z = cx^2 - y^2$ $C_2 = \{(0, y, -y^2) : y \in F\}$ $C_3 = \{(s, cs, c(1-c)s^2) : s \in F\}$

 $\mathcal{C}_4 = \{(t, t, (c-1)t^2) : t \in F\}$

Tangent vectors (1, 0, 2cx)

(1, 0, 2cx)(0, 1, -2y)(1, c, 2c(1-c)s)(1, 1, 2(c-1)t)

all lie in the curve XY(Y-X)(Y-cX) = 0 of degree 4

Example 2
$$\mathcal{C}_1 = \{(s^2, s, s^4) : s \in \mathbb{R}\}$$
 $\mathcal{S}:$ $\mathcal{C}_2 = \{(-2t, 0, -2t^2) : t \in \mathbb{R}\}$ $2z = y^4 + 2xy^2 - x^2$ $\mathcal{C}_3 = \{(-u^2, u, -u^4) : u \in \mathbb{R}\}$ $\mathcal{C}_4 = \{(-v^2, v, -v^4) : v \in \mathbb{R}\}$

Tangent vectors

$$egin{aligned} &(2s,1,4s^3)\ &(-2,\,0,-4t)\ &(-2u,1,-4u^3)\ &(-2v,1,-4v^3) \end{aligned}$$

all lie in the curve $Y(X^3-2Y^2Z)=0$ of degree 4

Example 3

 $z = (x+1)e^{-cy}-1 + \frac{c}{2}x^2 + cx$

 \mathcal{S} :

$$\begin{array}{l} \mathcal{C}_1 = \{(x, 0, \frac{c}{2}x^2 + (c+1)x) : x \in \mathbb{R} \} \\ \mathcal{C}_2 = \{(\frac{1}{c}(1 - e^{-cs}), s, \frac{1}{2c}(1 - e^{-2cs})) \\ & \quad : s \in \mathbb{R} \} \end{array}$$

$$egin{aligned} \mathcal{C}_3 &= \{(0,y,e^{-cy}-1):y\in\mathbb{R}\ \} \ \mathcal{C}_4 &= \{(t,rac{1}{c} {
m ln}(1{+}t),rac{c}{2}t^2{+}ct) \ : \ t>-1\ \} \end{aligned}$$

Tangent vectors

$$egin{aligned} &(1,0,cx{+}c{+}1)\ &(e^{-cs},1,e^{-2cs})\ &(0,1,-ce^{-cy})\ &(1,rac{1}{c(t{+}1)},c(t{+}1)) \end{aligned}$$

all lie in the curve $XY(X^2-YZ)=0$ of degree 4

Conjecture: For the web to be globally defined over F, C must be a union of four lines.

For $F = \mathbb{F}_p$, this is equivalent to:

If $\mathcal{N}_3 \subset \mathcal{N}_4$ are 3- and 4-nets of order p resp., then $\operatorname{rank}_p \mathcal{N}_4 - \operatorname{rank}_p \mathcal{N}_3 \geq p-1$.

Tangent vectors (1, 0, 2cx)

(1, 0, 2cx)(0, 1, -2y)(1, c, 2c(1-c)s)(1, 1, 2(c-1)t)

all lie in the curve XY(Y-X)(Y-cX) = 0 of degree 4