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Goal of Coding Theory

Digital information in the real world is subject
to errors, i.e. alteration due to unreliability of
storage media and interference in communi-
cations channels.

The goal of coding theory is to represent dig-
ital information in a form which allows for
the recovery of the original data from its cor-
rupted form, if the number of errors is not too
large.

T his requires that some redundancy be incor-
porated into the stored information.



Key People

Richard Hamming (1915—-1998), pioneer in
computer design and error-correcting codes.

Claude Shannon (1916—7), founder of Infor-
mation Theory, researcher at Bell Telephones
1941-1972.

Both Hamming and Shannon were involved in
the Manhattan Project.



Alphabet and Words

Information is stored and transmitted as a
stream of letters from a chosen alphabet F'.

Most popular is the binary alphabet F = {0,1}.

More generally, FF = {0,1,2,...,p—1} with ad-
dition and multiplication mod p (where p is a
prime) is popular because F' is a field. In this
case

F"={(a1,a2,...,an) i a; € F}

IS an n-dimensional vector space over F.

A word of length n is a string of n characters
from the alphabet F. If |F| = g then there
are q" words of length n. These are identified
with the vectors of F™.

A code of length n is a subset C C F™. Ele-
ments of C are codewords. If F = {0,1} then
C is a binary code.



Example 1: Parity Check Codes

The following binary code C; = {00000, 00011,
...,11110} of length 5 is formed by append-
ing a parity check bit to the end of each mes-
sage word.

Message word | Codeword
0000 00000
0001 00011
0010 00101
0011 00110
0100 01001
0101 01010
0110 01100
0111 01111
1000 10001
1001 10010
1010 10100
1011 10111
1100 11000
1101 11011
1110 11101
1111 11110

Using the code C;, we can detect up to one
bit error during transmission, but we cannot
correct any errors.



Example 2: 3-Repetition Codes

The following binary code C, of length 12 is
formed by repeating each message word three
times.

Message word Codeword
0000 0000 0000 0000
0001 0001 0001 0001
0010 001000100010
0011 001100110011
0100 010001000100
0101 010101010101
0110 011001100110
0111 011101110111
1000 1000 1000 1000
1001 1001 1001 1001
1010 101010101010
1011 101110111011
1100 110011001100
1101 110111011101
1110 111011101110
1111 111111111111

Using this code we can correct up to one bit
error during transmission.



T his gain comes at a price: C, has information
rate {5 = 3, lower than the information rate
of C1 which is .
The information rate of a binary code is the
ratio of the number of significant bits of in-
formation in each word, to the total length of

each word.

More generally for an alphabet of size |F| = g,
the information rate of a code C of length n
over F'is

log, |C]

n

We seek codes with
(i) high information rate, and
(ii) high error-correcting capability.

The goal (ii) requires that codewords be ‘far
apart’ from each other.



Hamming Distance

The Hamming distance between two words
x,y € ", denoted d(x,vy), is the number of
coordinate positions in which they differ.

E.g. d(10010,00111) = 3.

The minimum distance of a code C C F" is
the minimum of d(x,y) for all x %= y in the
code C.

Theorem. A code C corrects e errors if and
only if the minimum distance of C is at least
2e+1.

Proof. Suppose C has minimum distance at
least 2e+1. If a codeword x € C suffers at
most e bit errors, the corrupted word 2’ satis-
fies d(z',2) < e. And z is the only codeword



having distance < e from 2z’ since for every
codeword y #* x,

2e+1 < d(y,z) < d(y,z")+d(z',z) < d(y,z")+e

by the triangle inequality, so d(z’,y) > e+1.
The word 2’ is unambiguously decoded as x €
C. The converse is clear.

OO

Balls of radius e centered at codewords

Relationship with Sphere Packing

Finding a large code with minimum distance e
IS the same as packing as many balls of radius
e as possible in F™.



Example 3:
The Binary Hamming Code of Length 7

The following binary code C3 of length 7 has
Mminimum distance 3 and so corrects one bit
error.

Message word | Codeword
0000 0000000
0001 1010101
0010 0110011
0011 1100110
0100 0001111
0101 1011010
0110 0111100
0111 1101001
1000 1111111
1001 0101010
1010 1001100
1011 0011001
1100 1110000
1101 0100101
1110 1000011
1111 0010110




Encoding Using a Generator Matrix

In the binary Hamming code C3, the codeword
for the message x = (x1, o, 3, 24) € F% is the
matrix product G where

1 1
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= = = =
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O 1
O O
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For example, the codeword for 1010 is

(1,0,1,0)G = (1,0,0,1,1,0,0).



Decoding Using a Check Matrix

A binary word w € F’ is a codeword in Cz if
and only if Hw' = 0 where

0 O O 1 1 1 1]
H=0 1 1 0 0 1 1
1 0 1 0 1 0 1]

If w ¢ C3 then Hw' is the binary representation
of ¢+ € {1,2,...,7} and by switching the ith
bit of w we obtain the unique codeword at
distance 1 from w.

For example, w = 0011011 gives
-1 -

Huw' = |1

0

SO to decode w we switch the 6th bit of w,

giving 0011001 as the unique codeword at dis-
tance 1 from w.




Syndromes

Note that the vector Hw', called the syndrome
of w, does not depend on the original message
word, but only on the bit error incurred.

Linear Codes

A code C C F"™ is linear if the alphabet F' is a
field and C is a subspace of F™,

An [n, k,d] g-ary code is a k-dimensional sub-
space of F™ with minimum distance d, where
g = |F|. In this case |C| = ¢* and so the infor-
mation rate of C is

log, [C] &k
n o n
C1 is a [5,4,2] binary code.

C» is a [12,4, 3] binary code.

Cz is a [7,4, 3] binary code.



Some Good Reasons
for Using Linear Codes

1. Linearity reduces the encoding and decod-
ing processes to easily automated linear alge-
bra.

2. Many of the best codes (i.e. highest infor-
mation rate for a given length and minimum
distance) are linear. We suspect this to be
true by analogy with dense sphere-packings.

Centres of balls consist of all Z-linear combi-
nations of the two vectors shown.



Hamming Weight

The Hamming weight of a word w € F"™ is
d(w,0), i.e. the number of nonzero coordi-
nates in the vector w.

In any linear code C, d(x,y) = d(x—y,0) where
x—y € C so the minimum distance of C is sim-
ply equal to the minimum weight of C, i.e. the
minimum of d(w,0) for all w # 0 in C.



Shannon’s Theorem

Shannon showed that codes exist with prob-
ability of decoding errors as small as desired,
and high information rate (depending on the
channel).

Consider binary codes for which each bit trans-
mitted has probability p < % of error, and er-
rors in different bits are statistically indepen-
dent.

Fix a desired information rate R with
0 < R< 1—H(p) where

H(p) = —plogap — (1—p) loga(1—p)
(the entropy function.)

Theorem (Shannon, 1948). For all ¢ > 0
there exists a code C with information rate at
least R such that the probability of incorrectly
decoding a typical codeword is less than e.



The Gilbert-VVarshamov Bound
Fix 6 < %

For large n, there exist binary codes of length
n, Minimum distance at least dn, and infor-



mation rate as close as desired to 1 — H(J).

Hio



Recent Improvement

Tsfasman, Vladut and Zink (1982) used alge-
braic curves over finite fields to obtain codes
which (for ¢ > 49) do better than the Gilbert-
Varshamov bound (i.e. have asymptotically
higher information rate for the same length
and minimum distance).

Za-Linear Codes

Coding theorists have long been puzzled by
the fact that for certain n and d, the best bi-
nary codes of length n and minimum distance
d (i.e. highest information rate) are not linear.

Calderbank, Hammons, Kumar, Sloane and
Solé (c. 1995) showed that such codes are
Za-linear (Z4 = {0,1,2,3} with addition and
multiplication mod 4; this is not a field!)



