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Coding Theory

(Theory of Error-Correcting Codes)

The design and study of codes which protect

information against bit errors during transmis-

sion or storage.

Codes add redundancy to a message so that

errors can be corrected when the message is

read.



Cryptography

The design and study of schemes (cryptosys-

tems) for the exchange of information which

provide for one or more features such as:

Confidentiality—preservation of the content

of the information from all but the intended

recipient(s).

Authentication—guarantee of the identity of

the author (and possibly the date, time and

place of origin) of a message.



Cryptanalysis

The study of methods of defeating cryptosys-

tems, including

• the extraction of private information from

an encrypted message by unauthorised means;

• the unauthorised alteration of encrypted

data; or

• the impersonation of a participant in the

information exchange.

Cryptology = Cryptography + Cryptanalysis



Public Key Encryption

By this scheme, everyone is able to encrypt

messages to send to Alice, which no one but

Alice can decrypt.

The encryption algorithm is well known, effi-

cient and easily performed on any computer.

Alice’s public key is required in the encryp-

tion process.

The decryption algorithm is also efficient but

requires Alice’s private key, known only to

her. It is impossible or computationally infea-

sible to deduce the private key from the public

key.



RSA Public Key Cryptography

Alice privately chooses two large primes p �= q

and two large integers d, e such that

de mod (p−1)(q−1) is 1.

She publishes the pair (n, e) as her public key,

where n = pq.

Bob encrypts the message m (1 < m < n) as

m′ = me mod n, which he sends to Alice.

To decrypt the message m′, Alice computes

(m′)d mod n, which equals the original mes-

sage m.

Security of the System

Alice’s private key d cannot be determined

without a knowledge of the factorisation of n.

Without this information, it is presumably in-

feasible to recover the original message m given

the encrypted message m′.



Example

Alice chooses

p = 99103, q = 80177

d = 5144067833, e = 2968833449

so

(p−1)(q−1) = 7945601952

and

de mod 7945601952 is 1.

(e is determined from d by Euclid’s Algorithm.)

She publishes

n = pq = 7945781231 and e = 2968833449.

Encryption

Using blank=00, A=01, B=02, . . . , Z=26

we translate

Bob’s message: S E N D M O N E Y

Translation: 1905140400 |1315140525



Encrypted
message

1905140400e mod n = 6774683355

1315140525e mod n = 4105272362
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
...........................
..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

Decryption

6774683355d mod n = 1905140400
= S E N D

4105272362d mod n = 1315140525
= M O N E Y



Why RSA works

Let n = pq where p �= q are primes.

Let S be the set of positive integers x < n such
that gcd(x, n) = 1. Then |S| = (p− 1)(q − 1).
The product of all elements of S is

∏

x∈S

x =
∏

x∈S

(mx)

= m(p−1)(q−1) ∏

x∈S

x

(mod n) so m(p−1)(q−1) mod n is 1.

If de mod (p− 1)(q − 1) is 1, i.e.

de = k(p− 1)(q − 1) + 1

then

mde = mk(p−1)(q−1)+1

= (m(p−1)(q−1))k ·m = m

(mod n).



RSA Authentication Scheme

As before, Alice privately chooses two large

primes p �= q and two large integers d, e such

that

de mod (p−1)(q−1) is 1.

She publishes the pair (n, e) as her public key,

where n = pq.

Alice encrypts the message m (1 < m < n) as

m′ = md mod n, which she sends to Bob.

Bob (or anyone) can decrypt the message

m′ by computing (m′)e mod n, which equals

the original message m. This demonstrates

that the original message must have origi-

nated from Alice.

It is also possible to achieve both confidential-

ity and authentication for a network of indi-

viduals communicating over an open channel.



Rabin Encryption Scheme

The advantage of this scheme is that decrypt-
ing messages by unauthorised individuals is
known to be as hard as factorising n.

Alice secretly chooses two large primes p �=
q and publishes the value of n = pq. (For
simplicity we’ll assume p and q are both 3 mod
4.)

Bob encrypts a message m (1 < m < n) as
m′ = m2 mod n, which he sends to Alice.

Alice decrypts the message as follows: deter-
mine

integers a, b such that ap + bq = 1;

r = (m′)(p+1)/4 mod p;

s = (m′)(q+1)/4 mod q;

x = (aps + bqr) mod n; and

y = (aps− bqr) mod n.

The four possible values of m are ±x mod n

and ±y mod n.



Modular exponentiation, while implemented
efficiently in polynomial time, may still be too
slow for some applications. In such situations,
a conventional (faster) encryption process may
be used, having one-time encryption/decryption
key, e.g.:

Vernam Cipher

Until very recently, secure communication be-
tween Washington and Moscow used the fol-
lowing cipher scheme (with key exchange us-
ing a trusted courier service).

The two communicating parties secretly agree
on a binary string d = (d1, d2, . . . , dk) (di = 0
or 1).

A long message is broken up int binary strings
of length k and encrypted as

(x1, x2, . . . , xk)

�→ (x1⊕d1, x2⊕d2, . . . , xk⊕dk)

where ⊕ is addition mod 2.



Repeating this operation returns the original

message. Both encryption and decryption (which

are the same process) are performed very ef-

ficiently.

This is secure if

• the key d can be agreed upon with confi-

dentiality, and

• each key is only used once and then de-

stroyed.

We will describe how it is possible for two in-

dividuals, communicating over an open chan-

nel, to agree on an encryption key which is

inaccessible to any eavesdroppers.

The security of this protocol rests on the as-

sumed intractability of the discrete logarithm

problem.



Discrete Logarithm Problem

For every prime p, there exists a generator a

such that the powers

1, a, a2, a3, . . . , ap−2 mod p

give all the nonzero integers mod p.

E.g. p = 13 has a = 2 as a generator:

k 2k mod 13
0 1
1 2
2 4
3 8
4 3
5 6
6 12
7 11
8 9
9 5
10 10
11 7

←− log2(6) = 5



Problem: Given 0 < x < p, find 0 ≤ k ≤ p − 2

such that
ak mod p is x.

We write k = loga(x).

The best known algorithm on a conventional

computer finds loga(x) in time

eO(L1/3(logL)2/3)

where L = log p (Gordon, 1993). Shor’s quan-

tum algorithm computes discrete logarithms

in time polynomial in L.



Diffie-Hellman Key Exchange

A large prime p and a generator a for the in-

tegers mod p, are agreed upon beforehand.

(This information is not confidential.)

Alice secretly chooses a random integer

1 < x < p − 2 and sends Bob the value of ax

mod p, using an unsecured channel.

Bob secretly chooses a random integer

1 < y < p − 2 and sends Alice the value of ay

mod p, using the unsecured channel.

The secret encryption key is d = axy mod p,

which Alice computes as (ay)x mod p, using

the value of ay which she obtains from Bob.

Bob determines the same key as (ax)y mod p,

using the value of ax which he obtains from

Alice.



Security of the Key Exchange

An eavesdropper can deduce the value of the

secret key d = axy from the values of a, ax

and ay if he can first find x = loga(a
x) and

y = loga(a
y), but this is presumed to be in-

tractable. No faster method is known for

breaking the security of this key exchange.



ElGamal Encryption Scheme

Alice chooses a large prime p, a generator a

for the integers mod p, and a power ax mod p

where 1 < x < p− 2 is chosen randomly.

She publishes (p, a, ax mod p) as her public

key; x is her private key.

Bob encrypts a message m (1 < m < p−2) as

follows: He chooses 1 < k < p− 2 at random,

and computes

m1 = ak mod p and m2 = m1(a
x)k mod p.

He sends the encrypted message (m1, m2) to

Alice.

Alice decrypts the message by computing

m
p−1−x
1 m2 mod p, which equals the original

message m.

Breaking this scheme is presumed to be as

difficult as the discrete logarithm problem.



This scheme has the advantage that the same

message will not always be encrypted in the

same way.


