
Shor’s Algorithm
for Factorizing Large Integers

G. Eric Moorhouse, UW Math

References

H.-K. Lo, S. Popescu, and T. Spiller, Intro-
duction to Quantum Computation and Infor-
mation, 1998.

C.P. Williams and S.H. Clearwater, Explorations
in Quantum Computing, 1998.

A.V. Aho, J.E. Hopcroft and J.D. Ullman,
The Design and Analysis of Computer Algo-
rithms, 1974.

P. Shor, ‘Quantum computing’, proceedings
of the International Congress of Mathemati-
cians, 1998.

http://www.research.att.com/~shor/

papers/ICM.pdf

P. Shor, ‘Polynomial-time algorithms for prime
factorization and discrete logarithm problems’,
SIAM J. Computing 26 (1997), 1484-1509.

http://www.research.att.com/~shor/

papers/QCjournal.pdf

The factorization problem

Problem: Given a large integer n (typically

several hundred digits long), factorize n as a

product of primes.

We will assume (both for simplicity and with a

view to RSA cryptanalysis) that n = pq where

p and q are large unknown primes. We must

determine p and q.

The integers mod n

Let R = {0,1,2, . . . , n−1} with addition and

multiplication mod n. For a, b ∈ R we com-

pute

a+ b mod n and ab mod n

by first computing the sum or product as an

ordinary integer, then taking the remainder

upon division by n.

These operations are easily performed in poly-

nomial time in the input size � = log(n) using

a classical logical circuit or quantum circuit of

size polynomial in �.

For x ∈ R and a ≥ 0, the value of

xa mod n

can also be determined in polynomial time and

space.

Example: To compute x183 mod n, first write

183 in binary as 10110111. Then

x183 = x128x32x16x4x2x1

where the powers x2, x4, x8, . . . are found by

successively squaring mod n, then multiplied

together (mod n) two at a time only. This

way if n has 100 digits, say, then intermediate

computations have at most 200 digits.

Reduction of the Factorization Problem

Factorizing n reduces to the following prob-
lem:

Given 1 < x < n, find the order of x mod n,
i.e. the smallest r ≥ 1 such that xr mod n is 1.

Why such an r exists (almost certainly):

The list of powers

1, x, x2, x3, x4, x5, . . . (mod n)

must repeat with period < n. This period is
the order of x mod n since if xk = xj then
xk−j = 1.

Our cancellation of x’s above is legitimate as-
suming x has no factors in common with n.
But the probability that x is divisible by p or
q is miniscule. Moreover in this case p or q is
easily found in polynomial time by computing
gcd(x, n) using Euclid’s Algorithm. In this un-
likely event, Shor’s algorithm is not necessary.

Problem: Factor the following number.
> n:=175179906191667073;

n := 175179906191667073
Solution: First find the order of a randomly chosen x mod n:
> x:=372560175302;

x := 372560175302
Our quantum computer gives the order of x mod n as r = 87589952066302250:

r := 87589952066302250
> x &^ r mod n;

1
> y := x &^ (r/2) mod n;

y := 67951655829380287
The factors of n are:
> gcd(y+1,n);

88917251
> gcd(y-1,n);

1970145323
This succeeds in factoring n 25% of the time; the remaining 75% of the time

we obtain the trivial factors 1 and n.

1

Discrete Fourier Transform

The Discrete Fourier Transform of order q is

the unitary matrix

Uq =
1√
q




1 1 1 · · · 1

1 ζ ζ2 · · · ζq−1

1 ζ2 ζ4 · · · ζ2(q−1)

1 ζ3 ζ6 · · · ζ3(q−1)

...

1 ζq−1 ζ2(q−1) · · · ζ(q−1)2




where ζ = e2πi/q.

If q is a product of small prime factors, then Uq
can be factored as a product of a small num-

ber (polynomial in log(q)) of simpler unitary

transformations, each representing the action

of a quantum gate acting on only one or two

qubits. (E.g. if q = 2� then only �(� + 1)/2

such gates are necessary.)

Shor’s Algorithm

Given n, find 2n2 < q < 3n2 such that q is a
product of small prime factors. We’ll suppose
q = 2�.

Construct a quantum computer with q2 = 22�

qubits (plus additional qubits for ‘workspace’).
The base states are denoted

|a, b〉 = |a〉|b〉
where a, b are binary vectors (i.e. vectors with
entries 0,1) of length �. Equivalently, a and
b (called registers 1 and 2) are integers < q
written in binary.

At any time, the state of the system is given
by

|ψ〉 =
q−1∑
a=0

q−1∑
b=0

ca,b|a, b〉
where

ca,b ∈ C,
∑
a,b

|ca,b|2 = 1

and |ca,b|2 is the probability that a measure-
ment of the system will find the state to be
|a, b〉.

Step 1

Prepare the computer in initial state

|ψ〉 = |0,0〉.
Then apply the quantum gate

R =
1√
2

(
1 1
1 −1

)

to each of the � qubits in the first register;

this leaves the computer in the state

|ψ〉 =
1√
q

q−1∑
a=0

|a〉|0〉.

For example for q = 22 we have

1√
2




1 1
1 −1

1 1
1 −1

1 1
1 −1 .. .

1 1
1 −1




(applies R to a0)

× 1√
2




1 1
1 1

1 −1
1 −1 .. .

1 1
1 1

1 −1
1 −1




(applies R to a1)

×




1
0
0
0
0
...
0




=
1

2




1
1
1
1
0
0...
0




=
1

2
(|00,00〉 + |10,00〉
+ |01,00〉 + |11,00〉)

where all vectors have length q2 = 16 and all

matrices are 16 × 16.

Step 2

Fix a randomly chosen x between 1 and n.

Apply the reversible transformation

|a,0〉 �→ |a, xa mod n〉
to the state of the quantum computer. This

transforms the state |ψ〉 from

1√
q

q−1∑
a=0

|a〉|0〉

to

1√
q

q−1∑
a=0

|a〉|xa mod n〉.

Step 3

Measure the second register only. We observe
the second register to be in a base state |k〉
where k is some power of x mod n (and all
powers of x mod n are equally likely to be
observed).

This measurement projects the state |ψ〉 ∈ Cq
2

into the q-dimensional subspace spanned by all
base states |a, k〉 for the fixed k whose value
we have observed.

Thus the new state is

|ψ〉 =
1√
M

∑
a∈A

|a, k〉

where A is the set of all a < q such that
xa mod n is k and M = |A|. That is,

A = {a0, a0+r, a0+2r, . . . , a0+(M−1)r}
where M ≈ q

r � 1. Thus

|ψ〉 =
1√
M

M−1∑
d=0

|a0+dr, k〉.

Step 4

Apply the Discrete Fourier Transform Uq to

the first register. This transforms the state

from

1√
M

M−1∑
d=0

|a0+dr, k〉

to

|ψ〉 =
1√
qM

q−1∑
c=0

M−1∑
d=0

exp(2πic(a0+dr)
q)|c, k〉

=
q−1∑
c=0

e2πica0/q√
qM

M−1∑
d=0

exp(2πicdrq)|c, k〉

=
q−1∑
c=0

e2πica0/q√
qM


M−1∑
d=0

ζd


 |c, k〉

where ζ = e2πicr/q.

Step 5

Measure register 1. We observe register 1 to

be in state |c〉 with probability

Pr(c) =
1

qM

∣∣∣∣∣∣
M−1∑
d=0

ζd

∣∣∣∣∣∣
2

where ζ = e
2πicrq .

If crq is not very close to an integer, then pow-

ers of ζ very nearly cancel out (‘destructive in-

terference’) and such states |c〉 are extremely

unlikely to be observed. Note that

M−1∑
d=0

ζd =
1 − ζM

1 − ζ

is small in this case.

But if
cr

q
≈ d

where d is an integer, then ζ ≈ 1 and

Pr(c) ≈ M

qM
=

1

q

is much larger. Thus the observed probability

distribution of c is concentrated around values

such that
c

q
≈ d

r

where d is an integer.

Step 6

For the observed value of c, we use a classical

computer to find fractions d/r very close to

c/q, hoping that this will give us the true order

r of x mod n.

For this we use the method of continued frac-

tions, computing the convergents d1/r1 to c/q

for which the denominator r < n. Noting that

all the fractions

d1
r1
,
2d1
2r1

,
3d1
3r1

, . . .

are close to c/q, it is reasnoable to try small

multiples of r1 as possible values of r. Odlyzko

(1996) suggests trying

r1, 2r1, 3r1, . . . , 	log(n)1+ε
r1
as possible values for r, checking whether xr mod n

gives 1 in each case, and repeating the exper-

iment as often as necessary (O(1) times on

average, compared with O(log logn) trials on

average if multiples of r1 are not considered).

Example

We simulate a quantum computer attempting

to factor n = 55. This leads to q = 213 =

8192. Let’s fix x = 13. (This happens to

have order r = 20.)

Step 1: Initial state.

|ψ〉 = 1√
8192

(
|0,0〉 + |1,0〉 + |2,0〉 + · · ·

+ |8191,0〉
)

Step 2: Apply modular exponentiation.

|ψ〉 = 1√
8192

(
|0,1〉 + |1,13〉 + |2,132 mod 55〉

+ · · · + |8191,138191 mod 55〉
)

= 1√
8192

(
|0,1〉 + |1,13〉 + |2,4〉 + · · ·

+ |8191,2〉
)

Step 3: Observe register 2.

All ten powers of x mod 55 are equally likely

to be observed. Suppose we observe 28 as a

power of x mod 55.

|ψ〉 = 1√
410

(
|9,28〉 + |29,28〉 + |49,28〉 + · · ·

+ |8189,28〉
)

Step 4: Discrete Fourier Transform of

register 1.

|ψ〉 =
8191∑
c=0

e2πi·9c/8192
√

3358720


409∑
d=0

ζd


 |c,28〉

where ζ = e2πi·20c/8192.

Step 5: Measure register 1.

The probability of observing register 1 to be

in state |c〉 is

Pr(c) =
1

3358720

∣∣∣∣∣∣
409∑
d=0

ζd

∣∣∣∣∣∣
2

Let’s say we observe register 1 to be in state

|4915〉. (This happens with probability 4.4%.)

c

Pr(c)

Step 6: Continued Fraction Convergents

c

q
=

4915

8192
=

1

1 + 1
1+ 1

2+ 1
1638

Convergents:

1

1
= 1

1

1 + 1
1

=
1

2

1

1 + 1
1+1

2

=
3

5

1

1 + 1
1+ 1

2+ 1
1638

=
4915

8192

We stop before the denominator exceeds n =

55:

r1 = 5

Possible values for r are multiples of r1 = 5:

a 13a mod 55
5 43
10 34
15 32
20 1

Evidently r = 20. Now

y = 1310 mod 55 = 34

and the factors of n = 55 are

p = gcd(y + 1, n) = gcd(35,55) = 5;

q = gcd(y − 1, n) = gcd(33,55) = 11.

