Shor’s Algorithm
for Factorizing Large Integers

G. Eric Moorhouse, UW Math

References

H.-K. Lo, S. Popescu, and T. Spiller, Intro-
duction to Quantum Computation and Infor-
mation, 1998.

C.P. Williams and S.H. Clearwater, Explorations
in Quantum Computing, 1998.

A.V. Aho, J.E. Hopcroft and J.D. Ullman,
The Design and Analysis of Computer Algo-
rithms, 1974.

P. Shor, ‘Quantum computing’, proceedings
of the International Congress of Mathemati-

cians, 1998.
http://www.research.att.com/ “shor/
papers/ICM.pdf

P. Shor, ‘Polynomial-time algorithms for prime
factorization and discrete logarithm problems’,

SIAM J. Computing 26 (1997), 1484-1509.
http://www.research.att.com/ shor/
papers/QCjournal . pdf

The factorization problem

Problem: Given a large integer n (typically
several hundred digits long), factorize n as a
product of primes.

We will assume (both for simplicity and with a

view to RSA cryptanalysis) that n = pg where
p and g are large unknown primes. We must

determine p and gq.

The integers mod n

Let R = {0,1,2,...,n—1} with addition and
multiplication mod n. For a,b € R we com-
pute

a+bmodn and ab mod n

by first computing the sum or product as an
ordinary integer, then taking the remainder
upon division by n.

These operations are easily performed in poly-
nomial time in the input size ¢ = log(n) using
a classical logical circuit or quantum circuit of
Ssize polynomial in #.

For x € R and a > 0, the value of

% mod n

can also be determined in polynomial time and
space.

Example: To compute 2183 mod n, first write
183 in binary as 10110111. Then

513183 128$32£I:16£C4ZE2331

where the powers z2, 2% 28, ... are found by
successively squaring mod n, then multiplied
together (mod n) two at a time only. This
way if n has 100 digits, say, then intermediate
computations have at most 200 digits.

Reduction of the Factorization Problem

Factorizing n reduces to the following prob-
lem:

Given 1 < x < n, find the order of x mod n,
i.e. the smallest r > 1 such that " mod n is 1.

Why such an r exists (almost certainly):

The list of powers

1, 2,22, 23, 2% 22,... (mod n)

must repeat with period < n. This period is

the order of £ mod n since if z¥ = 27 then
kI =1.

Our cancellation of z's above is legitimate as-
suming x has no factors in common with n.
But the probability that x is divisible by p or
q IS miniscule. Moreover in this case p or q is
easily found in polynomial time by computing
gcd(xz,n) using Euclid’'s Algorithm. In this un-
likely event, Shor’s algorithm is not necessary.

Problem: Factor the following number.
> n:=175179906191667073;
n := 175179906191667073
Solution: First find the order of a randomly chosen z mod n:
> x:=372560175302;
x := 372560175302
Our quantum computer gives the order of x mod n as r = 87589952066302250:

r := 87589952066302250
> x & r mod n;

> y :=x & (r/2) mod n;
y = 67951655829380287
The factors of n are:
> gcd(y+1l,n);
88917251
> gcd(y-1,n);
1970145323
This succeeds in factoring n 25% of the time; the remaining 75% of the time
we obtain the trivial factors 1 and n.

Discrete Fourier Transform

The Discrete Fourier Transform of order q is
the unitary matrix

1 1 1 1
(1 ¢ (2 ¢a—1 \
1 [1 ¢2 ¢4 oo (2(e-1)
Ug = zil1 ¢ c6 o (3(e-1)
Kl g‘q:—l CQ(C;—l) C(qil)Q)

where ¢ = 27/4.

If g is a product of small prime factors, then Uy,
can be factored as a product of a small num-
ber (polynomial in log(q)) of simpler unitary
transformations, each representing the action
of a quantum gate acting on only one or two
qubits. (E.g. if ¢ = 2% then only ¢(¢ 4+ 1)/2
such gates are necessary.)

Shor’s Algorithm

Given n, find 2n? < g < 3n2 such that ¢ is a

product of small prime factors. We'll suppose
AL

q = 2°.

Construct a quantum computer with g2 = 22¢
qubits (plus additional qubits for ‘workspace’).
The base states are denoted

ja,b) = la)|b)

where a,b are binary vectors (i.e. vectors with
entries 0,1) of length ¢. Equivalently, a and
b (called registers 1 and 2) are integers < ¢
written in binary.

At any time, the state of the system is given

by g—1 q—1
|¢> — Z Z Ca,b|a7 b>
a=0b=0
where
2
Cab € C, Z |Ca,b| =1
a,b

and |ca,b|2 is the probability that a measure-
ment of the system will find the state to be
|a, b).

Step 1

Prepare the computer in initial state

[v) =10, 0).
Then apply the quantum gate

1 /1 1
=1 (1 3)
to each of the ¢ qubits in the first register;
this leaves the computer in the state

1 qz‘:l
V) = — a)|0).

\/aa:O
For example for ¢ = 22 we have
1 1
1 -1

11 (applies R to ag)

Nl
e
L

S]
11
1 -1
L . (applies R to a7)
X —— applies O aj
V2 1 1
11
1
L 1 _1_
- -
ol
0
1 1 1
x [0 = = — ~ (|00, 00) + |10, 00
0 5 8 2(I) + |)
s +(01,00) + |11, 00))
| O | O

where all vectors have length ¢2 = 16 and all
matrices are 16 x 16.

Step 2
Fix a randomly chosen = between 1 and n.

Apply the reversible transformation
la, 0) — |a,z® mod n)

to the state of the quantum computer. This
transforms the state |¢) from

1 91
- a)l0
ﬁa§o|)10)

to
1 !
— > |a)|z* mod n).
\/aa:()

Step 3

Measure the second register only. We observe
the second register to be in a base state |k)
where k is some power of £ mod n (and all
powers of x mod n are equally likely to be
observed).

This measurement projects the state |y) € o
into the g-dimensional subspace spanned by all
base states |a, k) for the fixed k£ whose value
we have observed.

Thus the new state is

1
V) = Vi > la, k)

acA
where A is the set of all a < ¢ such that
xz* mod n is k and M = |A|. That is,

A = {ag, ag+r, ag+2r, ..., ag+(M—1)r}
where M ~ % > 1. Thus

1 M-1

) = Vo dz::O lag+dr, k).

Step 4

Apply the Discrete Fourier Transform Uy to
the first register. This transforms the state
from

to

g—1 e2micag/q M-1

= exp(27mCdr)|c k)
cgo vaM dzzjo
231 e2micag/q (MZ)

= c, k)
c=0 'V d=0

where ¢ = e2micr/q.

Step 5

Measure register 1. We observe register 1 to
be in state |c) with probability

M—1 |2

d=0

where (= e 47,

If % IS not very close to an integer, then pow-
ers of (very nearly cancel out (‘destructive in-
terference’) and such states |c) are extremely
unlikely to be observed. Note that

1— CM

d_
ZC —¢

is small in this case.

But if

—~d
q
where d is an integer, then (= 1 and
M 1
Pr(c) ~ — ==
qgM ¢

IS much larger. Thus the observed probability
distribution of ¢ is concentrated around values

such that
C

Y
Y

q
where d is an integer.

REESY

Step 6

For the observed value of ¢, we use a classical
computer to find fractions d/r very close to
c/q, hoping that this will give us the true order
r of x mod n.

For this we use the method of continued frac-
tions, computing the convergents dq/r1 to ¢/q
for which the denominator r < n. Noting that
all the fractions

di1 2d1 3dj

7“17 27“17 37“1"“
are close to c¢/q, it is reasnoable to try small
multiples of r1 as possible values of ». Odlyzko
(1996) suggests trying

ri, 2r1, 3r1,..., [log(n)1T¢|r;

as possible values for r, checking whether ™ mod n
gives 1 in each case, and repeating the exper-
iment as often as necessary (O(1) times on
average, compared with O(loglogn) trials on
average if multiples of 1 are not considered).

Example

We simulate a quantum computer attempting
to factor n = 55. This leads to ¢ = 213 =

8192. Let's fix £ = 13. (This happens to
have order r = 20.)

Step 1: Initial state.

) =

= (10,0) +11,0) 4 2,0) +
+ |8191,o>)

T

819

Step 2: Apply modular exponentiation.

¥) = ka5 (10,1) +11,13) + 2,13% mod 55)
+ -+ +8191,138191 mod 55))

5 (10,1) +11,13) + [2,4) +

T

819
|8191,2>)

Step 3: Observe register 2.

All ten powers of x mod 55 are equally likely
to be observed. Suppose we observe 28 as a
power of x mod 55.

(19,28) 4 |29,28) + [49,28) + - --
+ 18189, 28))

— 1
Y) = Zite

Step 4: Discrete Fourier Transform of
register 1.

8191 27‘('7, 96/8192 409
_ 28)
V) Z /3358720 (Z ¢) e

Step 5: Measure register 1.

The probability of observing register 1 to be
in state |c) is

1 409 d2
P —
7€) = 3358720 d;f

Let's say we observe register 1 to be in state
14915). (This happens with probability 4.4%.)

0.041
Pr(c)
8.031

0.02

0.01

2000 4000 6000 ; BO00

Step 6: Continued Fraction Convergents

c 4915 1
q_8192_1—|—1_|_ L
2+ 1533
Convergents:
1
- =1
1
11
179
1—|—1
1 3
— =
= 5
1+
1 4915
1 © 8192
L4 819
211638

We stop before the denominator exceeds n =
55:

r1r =25

Possible values for r are multiples of r{ = 5:

a | 13 mod 55
5 43
10 34
15 32
20 1

Evidently » = 20. Now
y = 1319 mod 55 = 34
and the factors of n = 55 are

p =g9gcd(y + 1,n) = gcd(35,55) = 5;
g =g9gcd(y — 1,n) = gcd(33,55) = 11.

