
Computational Complexity using
Deterministic, Randomized,
and Quantum Computers

G. Eric Moorhouse, UW Math

References

H.-K. Lo, S. Popescu, and T. Spiller, Intro-
duction to Quantum Computation and Infor-
mation, 1998.

C.P. Williams and S.H. Clearwater, Explorations
in Quantum Computing, 1998.

A.V. Aho, J.E. Hopcroft and J.D. Ullman,
The Design and Analysis of Computer Algo-
rithms, 1974.

P. Shor, ‘Quantum computing’, proceedings
of the International Congress of Mathemati-
cians, 1998.

http://www.research.att.com/~shor/

papers/ICM.pdf

P. Shor, ‘Polynomial-time algorithms for prime
factorization and discrete logarithm problems’,
SIAM J. Computing 26 (1997), 1484-1509.

http://www.research.att.com/~shor/

papers/QCjournal.pdf

Models of Computers and Computability

We will describe

(i) RAM’s (Random Access Machines);

(ii) Turing machines;

(iii) logical circuits; and

(iv) non-deterministic, randomized and

quantum versions of (i)–(iii).

Two types of computational problems:

• decision problems (yes/no answers only);

• arbitrary computational problems.

RAM’s (Random Access Machines)

Infinitely many memory locations

M0, M1, M2, . . . ,

each of which can hold any integer. Each

location can be accessed immediately, and we

can use some locations as pointers to other

locations.

Uses an idealized, simplified programming lan-

guage much like the assembly language of any

modern computer.

Turing Machines

Take

• an alphabet Γ ⊇ {0,1, blank};
• a finite set Q of states, including

a designated initial state q0 ∈ Q and

a subset of accepting states A ⊆ Q;

• an input tape and k workspace tapes, all

of which are readable and writable; and

• a transition function

δ : Q × Γk+1 → Q × Γk+1 × {L, R}k+1.

The machine runs by iterating δ until δ is

undefined for the current state and symbols

read, at which point the machine halts. An

input (a string of symbols from the alpha-

bet Γ fed in via the read/write tape) is ac-

cepted by the machine if it halts in an ac-

cepting state. The language of the machine

is the set of words (input strings) accepted by

the machine.

An arbitrary language L (set of words, i.e.

strings from Γ) is decidable if there exists

a Turing machine which eventually halts for

every possible input, and whose language is

L.

Sample Turing Machine

This machine accepts words in the language

L of all finite strings consisting of the same

number of 0’s and 1’s.

Transition function δ

INPUT OUTPUT
State Input Work State Work Move Move

tape tape tape input work

q0 0 blank q1 0 R L
q0 1 blank q1 0 R R
q1 0 blank q1 blank R L
q1 0 0 q1 0 R L
q1 1 blank q1 blank R R
q1 1 0 q1 0 R R
q1 blank 0 q2

Here q0 is the initial state, q2 is the accepting

state. I use k = 1 workspace tape.

Logical Circuits

Example: Toffoli Gate

X Y Z (X ∧ Y) ⊕ Z
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

This gate is universal for classical logic.

The Church-Turing Hypothesis

(“Church’s Thesis”):

Any ‘effectively computable function’ can be

computed by a Turing machine.

Support for this hypothesis is given by

Theorem. The following classes of problems

are identical:

(i) The class of computational problems solv-

able by a Turing machine.

(ii) The class of computational problems solv-

able by a RAM.

(iii) The class of computational problems solv-

able by a family of logical circuits that can

be generated by a Turing machine.

Polynomial Time

P = the class of decision problems solvable

in ‘polynomial time’ (i.e. time O(�k) for some

k ≥ 0, where � is the input size) on

(i) a Turing machine; or

(ii) a RAM∗; or

(iii) a family of circuits† of polynomial size.

These are roughly the ‘manageable’ problems.

P = the class of languages accepted by some

(deterministic) Turing machine which halts in

time polynomial in the input size.

∗RAM log-cost model: the time required to add two
�-bit numbers is O(�).

†We assume the circuit for inputs of size � can be gen-
erated by a Turing machine with running time O(�k).

Non-deterministic Turing Machines

Replace the deterministic transition function
δ by a relation which gives a set of possible
transitions for each input. A word is accepted
by the machine if, for this input, there exists
a set of transitions allowed by δ for which the
machine halts in an accepting state. The lan-
guage of a machine is the set of all words
accepted by a non-deterministic Turing ma-
chine which halts for all possible computa-
tional routes.

Equivalently, the machine is allowed to make
‘guesses’. We can implement this machine
using a deterministic Turing machine with an
additional read-only tape for inputing guesses.

NP = the class of decision problems that can
be solved in polynomial time on some non-
deterministic Turing machine which halts for
all possible ‘guesses’

= the class of all languages accepted by
some non-deterministic Turing machine with
execution time O(�k) for some k ≥ 0.

Consider a decision problem: test whether x ∈
L for a given language L. Testing whether x ∈
L in polynomial time on a non-deterministic

Turing machine, is equivalent to checking a

given proof that x ∈ L in polynomial time on

a deterministic Turing machine.

Example: Factoring n is in NP
Given n and two guesses p,q for the factors

of n, we can easily check in polynomial time

whether or not n = pq. (Multiplication of �-

digit numbers p, q is performed asymptotically

in time O(� log � log log �); or practically in time

O(�2).)

Big Open Problem

Clearly P ⊆ NP. Does P = NP?

A decision problem x ∈ L is NP-complete if

it is in NP, and if every NP decision problem

can be reduced (in polynomial time) to the

problem x ∈ L. Thus P = NP iff L ∈ P.

Thousands of useful problems have been shown

to be NP-complete, e.g. the satisfiability prob-

lem: Given a logical expression similar to

(P1∨P4∨P5)∧(P2∨P4∨P9)∧· · ·∧(P4∨P11∨P26),

determine whether or not there is an assign-

ment of values {T, F} to P1, P2, P3, . . . for which

the expression is true (S.A. Cook, 1971).

Randomized Turing Machines

Like a (deterministic) Turing machine, but

we allow the machine to flip coins during the

computation, and transitions can depend on

the outcomes of the flips.

Equivalently, a randomized Turing machine

can be implemented as a deterministic Tur-

ing machine with an additional read-only in-

put tape for inputing a random stream of 0’s

and 1’s.

BPP = the class of languages L for which

there exists a polynomial-time randomized Tur-

ing machine which accepts each word x ∈ L

with probability at least 2
3 , and rejects each

x /∈ L with probability at least 2
3 .

E.g. the set of all primes (considered as a lan-

guage) is in BPP. Moreover if the Generalized

Riemann Hypothesis holds, then the set of all

primes is in P (Miller, 1976).

Benchmark Problems
for Randomized Computation

Factorization: Given an integer N , compute
the prime factorization of N .

The limit for factorization using current al-
gorithms on modern computers is about 120
decimal digits. Expected execution time

O(e�1/3(log �)2/3(C+o(1)))

where � = log(N) (the number of digits of N).
See A.K. Lenstra and H.W. Lenstra, 1993.

Proving Primality: Given an integer N , which
we suspect to be prime, prove that N is prime.

Current algorithms on modern computers are
able to prove primality of numbers up to about
1000 decimal digits. Expected execution time

O(�6).

See L. Adleman and M. Huang, 1992.

Proving Compositeness: Expected execu-
tion time O(�2) (Rabin 1980, Miller 1976).

Quantum Circuits

Similar to classical logical circuits. There are

� input ‘wires’ and � output ‘wires’, each car-

rying (rather than a bit, i.e. binary value 0 or

1) a value (z0, z1) ∈ C2, called a qubit. In be-

tween, information moves from left to right,

passing through certain quantum gates, each

gate having either one input and one output

wire, or two input and two output wires. At

each stage of the computation, the state of

the system is represented by a unit vector in⊗n C2 ∼= C2n
. Each gate performs a unitary

transformation A on the one or two qubits to

which it is applied. The effect of each gate on

the entire state of the system is obtained by

tensoring A with the identity on the remain-

ing qubits (to obtain an element of U(2n, C)).

The net effect of the entire circuit is the com-

position (i.e. matrix product) of the matri-

ces in U(2n, C) corresponding to the individual

gates.

(One must also impose a ‘uniformity condi-

tion’, similar to our restriction on classical log-

ical circuits, to ensure that the complexity of

the circuit itself is not more than polynomial

in the input size �.)

Example: A quantum circuit which simu-

lates a classical Toffoli gate.

X

Z

Y

X

(X Y) Z

Y

R
-1R

-1 R
-1 ©∧

R=

(
cos(π

8) sin(π
8)

− sin(π
8) cos(π

8)

)
, =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0






R−1

R−1

R−1

R−1





I

W
I

W





R−1

R−1

R−1

R−1




×




I
I

W
W





R

R
R

R






I
W

I
W





R

R
R

R




=




1
1

1
1

1−1
1

1




where I =
[
1
0
0
1

]
, W =

[
0
1
1
0

]
.

This shows that any computation which can

be performed in polynomial time on a classical

computer, can also be performed (in principle)

on a quantum computer.

However, quantum computers are also able

to perform (in polynomial time) certain com-

putations for which no polynomial-time algo-

rithm is known. Especially:

Shor (1994) showed that an �-digit number

can be factored in expected time O(�2) on a

quantum computer. (Recall: the best known

algorithm on a randomized classical computer

has expected execution time exponential in �.)

BQP = the class of languages L for which

there exists a polynomial-time quantum com-

puter which accepts each word x ∈ L with

probability at least 2
3 , and rejects each x /∈ L

with probability at least 2
3 .

It is generally believed that BQP contains prob-

lems in NP \P but does not contain any NP-

complete problems.

