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Aspects of
Quantum Information Theory

 quantum computation

 quantum cryptography

e quantum (error-correcting) codes
e quantum teleportation



Cryptosystem

» protecting information from unauthorized access or alteration
e authentication (certifying authorship of messages)

Cryptology

Cryptography Cryptanalysis

(making/using (attempting to break
cryptosystems) cryptosystems)

Coding Theory (Error-Correcting Codes)

» protecting information from alteration due to environment
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nanocomputers

» Miniaturization of conventional
computers using conventional algorithms
* Increase In computation speed by a few

orders of magnitude only

VS.
guantum computers

 Entirely new breed of (hypothetical) computers
using massively parallel algorithms

* Increase In computation speed by indefinitely
many orders of magnitude







Why the recent interest
In quantum computers?

Conventional computers are able to
factor integers of at most 120 digits.

175179906191667073
= 88917251x1970145323

dhor (mid-1990's) showed much
larger integers can be factored using
a (hypothetical) quantum computer.



¥ Dr. Lehmer's
. Factoring Machine
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RSA Public Key Cryptography

Encryption uses n=pqg (public key)
where p and g are large primes.

Decryption requires knowledge of p
and g (private key).



A Crash Course 1n
Quantum Mechanics
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Prediction of
Classical Mechanics
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Conventional Information

Unit: bit m l
. 1




Conventional Information

Unit: bit m l
. 1

Quantum Information
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Unit: qubit

l.e. (a,b,c,d) e R4,
22+h2+c2+d2 = 1 o,BecC, |a]?+|B]?=1




Conventional Information
Unit: bit m l
. 1

Quantum Information

Unit: qubit




T he State of an Electron

State = |¢) = a|0) + G|1)

where o, 8 € C (complex numbers) such that
e® 4 18] = 1

la|2 = probability that the electron, if mea-
sured, will be found to have spin up

8|2 = probability that the electron, if mea-
sured, will be found to have spin down



T he State of a Pair of Electrons

) = app|00) + @01]|01) + a10[10) + 11|11)

where ago, @01, 10,211 € C such that
lool? + |ao1|? + |e1ol? + |@11]2 = 1

lago|? = probability that both electrons, if
measured, will be found to have spin up

g1 |? = probability that if measured, the first

electron will be found to have spin up, and
the second electron spin down

etc.



The State of a System of n Electrons

|¢> = Z ail,ig,...,inlila 7:2: “ ey Zﬂ)

21520 5:45n

where >~ |O‘i1,z’2,...,in,|2=1

11 4224..44ln

|y in....in|2 = Probability that if the entire sys-
tem of electrons is measured, the k-th elec-
tron will have spin up or down according as
ik =)o

The vector space of all possible states is c2"



What gives a quantum computer
its exceptional power?

. superposition principle

2. exponential number of
base states

3. quantum entanglement



Useful computation requires
hundreds of thousands of
qubits (electrons).

We have only recently managed
to realize a quantum computer

with 7 qubits (electrons)
using NMR techniques.



NMR apparatus
used in quantum
computation

University of Oxford
1997




Quantum

Teleportation
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Properties of Teleportation

1. Kirk's molecules are not
physically transported.

KKather new molecules
are assembled at the

destination according to
fransmitted instructions.

2. The new copy of Kirk is
indistinguishab\e from
the original.

3. The original Kirk is
expended in the process.



EPR Pairs of Particles
o

&
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Einstein, Podolsky & Rosen (1935)




An EPR Pair of Electrions

State = |¢)) = f\oo> \}5|11>

The two electrons are entangled: even if they
are light years apart, both electrons, if mea-
sured, will be found to have the same spin.

Shared EPR pairs of electrons are a resource
for teleporting quantum information.



Quantum
Cryptography



Apparatus of the First
Quantum Cryptographic Experiment
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C. Bennett, G. Brassard, J. Smolin (1989)



Polarized Light
passing through Polarized Filter

50% transmission 50% transmission



Quantum
Money



Stephen Wiesner's
Quantum Money (late 1960's)
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Charles Bennett







Richard Feynman
1918-88




Initially, concerns were raised that the effects of

decoherence would present an insurmountable obstacle
to useful guantum computation.

Palma, Suominen and Ekert, Quantum computers and
dissipation, 1996.
Unruh, Maintaining coherence in guantum computers, 1995.



Initially, concerns were raised that the effects of

decoherence would present an insurmountable obstacle
to useful guantum computation.

Palma, Suominen and Ekert, Quantum computers and
dissipation, 1996.
Unruh, Maintaining coherence in guantum computers, 1995.

Later studies showed how quantum codes could protect

guantum computation from the effects of decoherence.

Calderbank and Shor, Good quantum error-correcting codes
exist, 1996.
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RSA

Public Key
Cryptography



Alice privately chooses two large primes p # g
and two large integers d.e such that

de mod (p—1)(g—1) is 1.

She publishes the pair (n.,e) as her public key,
where n = pgq.

Bob encrypts the message m (1 < m < n) as
m’ = m° mod n, which he sends to Alice.

To decrypt the message m'/, Alice computes
(m’)? mod n, which equals the original mes-
sage m.

Security of the System

Alice's private key d cannot be determined
without a knowledge of the factorisation of n.
Without this information, it is presumably in-
feasible to recover the original message 1 given
the encrypted message m'.



Example

Alice chooses

=991 03, g = 80O177
d = 5144067831, e = 2968833449

SO

(p—1)(g—1) = 7945601952
=1gle)

de mod 7945601952 is 1.
(e is determined from d by Euclid’s Algorithm.)

She publishes
n = pq = 7945781231 and e = 2968833449.

Encryption

Uising blank=00, A=01, B=02, ..
we translate

Bob’'s message: SHENINGD M IN D EY
Translation: 1905140400(|1315140525

.y £=26



Encryption

Original Encrypted
message message

mod n

mod n

Decryption

Encrypted Decrypted
message message



Quantum

Teleportation



An EPR Pair of Electrions

State = |¢)) = f\oo> \}5|11>

The two electrons are entangled: even if they
are light years apart, both electrons, if mea-
sured, will be found to have the same spin.

Shared EPR pairs of electrons are a resource
for teleporting quantum information.



Bell Basis

The state of any pair of electrons is express-
Ible as

apo|00) + ap1|01) + a10[10) + a11|11)

where ¥ |a;|? =1, or as

B1|B1) + B2|B2) + 83|B3) + B4|Ba)

in terms of the basis

Bi) = 55(100)+(11)),  [Bo)

N

(l00)—[11)),

i

B3) = 55(101)+(10)),  [Ba) = J5(101)-[10))



Quantum Teleportation

Two distant parties (Alice and Bob) share an
EPR pair of electrons (2 and 3). Alice wants
to teleport electron 1 (in unknown state «|0)+
3|1)) to Bob.

The complete state of the three electrons is
(al0) + 8I1)) @ J5(100) + [11))

= 1(|000) + a|011) + 5|100) + 5|111))

= 1|B1) ® («|0) + BI1))
+ 31B2) ® (a]0) — B|1))
+ 3|B3) ® (810) + 1))

+ 3|Ba) ® (—BI0) + a|1))



Alice measures her pair of electrons (1 and 2)
relative to the Bell basis, observing the pair
to be in one of the four states By, By, B3 or
By.

She calls Bob and tells her which of the four
states was observed (two bits of classical in-
formation only).

Bob applies one of the four unitary operators

o 2) o 5) (6 o) (G o)

respectively to his electron (electron 3) to put
it into the unknown state «|0) 4 3|1).



