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Motivation

A projective plane of order n has
n2 +n 4+ 1 points:
n? 4+ n 4+ 1 lines:
n + 1 points on each line;
n + 1 lines through each point.

Example: The projective plane of order n = 2

7 points

7 lines

3 points on each line

3 lines through each point

Open Problems

e Must every finite projective plane have prime
power order?

e Must every projective plane of prime or-
der n = p be classical? (points = 1-dim
subspaces of IE“3, lines = 2-dim subspaces)



Brief History

Theorem (Bruck and Ryser, 1949). Ifthere
is a projective plane of order n =1,2 mod 4,
then n = a2 + b2.

Although 10 = 12 4+ 32, we have

Theorem (Lam et al., up through 1989).
There is no projective plane of order 10.



A quasigroup is a finite set X with a binary
operation x such that

(i) forall x € X, the map y — xx*y is bijective
on X: and

(ii) forall y € X, the map x — xx*y is bijective
on X.

We will always take X = {1,2,...,n} and as-
sume 1 is a left-identity:

(iii) 1xx=x for all x € X

The left-multiplication group of (X, *) is the
subgroup G < Sym(X) generated by all per-
mutations of type (i).



Example: X = {1,2,...,13}, * has multipli-
cation table

(1 2 3 4 5 6/7 8 9 10 11 12 13]
9 4 10 8 2 v 13 6 5 11 1 3 12
11 3 12 2 6 13 9 10 1
5 1311 7 10 12 8 9
6 8 2 5 12 3 10 4
12 5 6 10 1 11 2 7
8 12 5 13 9 4 3 11
4 6 9 12 7 5 1 13 2 10 11
10 7 13 3 4 1 12 2 11 5
3 1 7 9 11 2 4 5 10 13 12
7 11 4 1 8 10 6 3 13 12 9
1310 8 11 3 9 5 1 12 6 7

' 2 9 1 6 13 8 1112 4 ¢ 3

4 8
6 1
13 11
8 13
10 7

0 O W NN
0 W NN O B b O
H » ©O W N

N 01 00 O

o & N O O

10

Here G = PSL(3, 3) < 513.



A quasigroup (X, x*) of order n determines a
3-net, eg.

Quasigroup (X, x) 3-Net N3

1 2 3
3 1 2| T

nxn n2 points:
3n lines;

3 parallel classes
of n lines each;

n points on each line

Problem: Determine the p-rank of N3 (i.e.
of the point-line incidence matrix of N3) in
terms of properties of (X, %) or of G.



Let | X| =n=p%m, p}[m (denoted p?||n).

Theorem (1991). ranky N3 = 3n—2—e where
e<a and

X/Y|=p% Y=({Q:Q normal in X,
X/Q elem. abel. p-gp}.

Theorem (2000). ranky, N3 = 3n—2—e where
e<a and

IG/K|=p° K=(|{L:H<LLG,
G/L elem. abel. p-gp};

here H is the stabilizer of an element of X.



Connection to Projective Planes

Two quasigroups (X, =) and (X, o) are orthog-
onal if the map

X% = X%, (x,9) — (zxy,z0y)
IS bijective.

k—2 mutually (k-net N}, of order n:

orthogonal n? points, nk lines:
quasigroups

of order n < k parallel classes
(k < n41) of n lines each;
"N )

| n points on each line

I

1 2 3|1 2

eg. 4-net
3 1 2 1| < (affine plane)
23 131 2 of order 3

n—1 mutually

orthogonal L', 1) net A,_; of order n
quasigroups (affine plane)
of order n

«—— projective plane of order n



Conjecture (1991). If p||n then

rankp Ny, — rankp Ni._1 > n—k—+1.

If this Conjecture holds then every projective
plane of squarefree order n, or order n = 2
mod 4, is classical with n = p = prime.



Cohomology

Let G be a permutation group on X. Fix a
prime field F' = ).

For k> —1, a k-cochain is a map f: XF+t1
F. These form a vector space CF(X) of di-
mension nft1 over F.

The coboundary operator 8 : CkF — CkT1 s
the linear transformation f — Of where

(af)(ZUO, L1y---, xk-l—l)

k41 |
= > (=1)'f(z0,---» T xp) -
i=0

Then 82 = 0, giving the cochain complex

0L 2 o0x) % otx) L c?(x) 4.



ZF(X) = ker(0 : CF(X) — CFTH(X))
= {k-cocycles}
U

BE(X) =im(@8: c*1(X) = CF (X))
= {k-coboundaries}

Ck(X) is a left G-module via
(9f)(zo,z1,. .., 2) = f(gz0, 971, - -, gT})

and the action of G commutes with 0.

f is G-invariant, denoted f € C*(X)C, if gf =
f for all g € G.



Back to nets...

Consider the 3-net N3 corresponding to a quasi-
group (X, x) of order n. This has three parallel
classes of lines:

l1,a = {(a,y) 1y € X},

lop = {(z,b) 1z € X},

(3. ={(z,y) iz xy =c}.

Let £, = (4, : z€ X)p. Clearly
dimp L; = n,;
dimp(L; + £;) =2n — 1 for ¢ # j.

Also

dim(L1+Lo+L3)
=dim(£L1+L2) +dim L3
— dim((£1+£2) N L3)
=3n—1—-dim((L14+Ly) N L3)



Lemma. The restriction ofd: C9(X) — BL(X)
to a certain subspace U = ((L1+L>)NL3) in-
duces an exact sequence

0
0 — Z29UX) - U Olu, Bl(x)¢ —o0.

Proof. (L1 4+ L>)N L3

2U={cecC%X): Y cl(x)ls,
reX

— Z (a(m)ﬁl,x + b(ﬂf)eQ,x)'
reX
some b,c € CO(X)}.

Evaluating at (x,y)—(x,1)—(1,y)+(1,1) gives
c e U iff

clxxy) =clxz*x1)+ c(y) —c(1)
for all x,y € X.



This implies that the map dc € BY(X) is G-
invariant:

(Oc)(u*xz,uxy) =cluxy) —c(u*x)
= (c(ux1) 4+ c(y) —c(1))
— (c(ux1) 4+ c(z) —c(1))
= c(y) — c(z)
= (9c)(z,y).

Thus 8U C BY(X)E. Conversely, given dc €
BL(X)E where ¢ € CO(X), we take a(z) =
c(xx1), blx) =c(x) —c(l) toget ce U.

Finally, ker (9|y) = U N Z9%(X) = Z9(X) since
Z9(X) = F consists of constant functions
x — ¢, these lie in U since

Z cl3 o = Z (cl1+0lo ).
reX reX

Corollary. rank, N3 = 3n—2 — dim B1(X)C.



As before, | X| =n = p*m, p fm.

Theorem. dim B1(X)& = e < a where
IG/K|=p° K=(|{L:H<LLJG,
G/L elem. abel. p-gp};

here H is the stabilizer of an element of X.

Proof. Denote by V the F-vector space of
maps f : G — F vanishing on H such that

f(gh) = f(g) + f(h) for all g,h € G.

Such maps have kerf O K and dimV = e.
We construct

[aY)

¢: BL(X)C =V

as vector spaces over F. Fix xg € X. Given
b e BY(X)C, define

¢b: G — F, g b(zg,gz0)-
Then ¢be V since



0 = (0b)(z0, 9o, ghzo)
= b(gzo, ghro) — b(xo, ghzo) + b(z0, gx0)
= b(zg, hxg) — b(xg, ghzo) + b(x0, gz0)
= (¢b)(h) — (¢b)(gh) + (¢b)(g).

Clearly ¢(a+b) = da—+ b, and if b= 0 then

b(gz0, hao) = b(zo, g~ "hwg) = (¢b)(g~"h) =0
and the transitivity of G on X gives b = 0.

To show ¢ is onto: Let f € V. Define ¢ €
CO(X) by

cr(gzo) = f(9)-
This is well-defined since f vanishes on H, the
stabilizer of xg. Now

(Ocy) (o, gz0) = cf(gzo) — cp(x0)
= f(g) — f(1) = f(g)

gives ¢(dcy) = f.

Finally, K has p® equal-sized orbits on X, so
p¢ln and e < a.




