Quasigroup Cohomology and *p*-Ranks of Nets

G. Eric Moorhouse University of Wyoming

Motivation

A projective plane of order n has

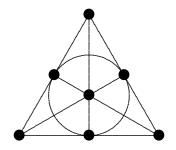
$$n^2 + n + 1$$
 points;

$$n^2 + n + 1$$
 lines;

n+1 points on each line;

n+1 lines through each point.

Example: The projective plane of order n=2



7 points

7 lines

3 points on each line

3 lines through each point

Open Problems

- Must every finite projective plane have prime power order?
- Must every projective plane of prime order n=p be classical? (points = 1-dim subspaces of \mathbb{F}_p^3 , lines = 2-dim subspaces)

Brief History

Theorem (Bruck and Ryser, 1949). If there is a projective plane of order $n \equiv 1, 2 \mod 4$, then $n = a^2 + b^2$.

Although $10 = 1^2 + 3^2$, we have

Theorem (Lam et al., up through 1989). There is no projective plane of order 10.

A *quasigroup* is a finite set X with a binary operation \ast such that

- (i) for all $x \in X$, the map $y \mapsto x * y$ is bijective on X; and
- (ii) for all $y \in X$, the map $x \mapsto x * y$ is bijective on X.

We will always take $X = \{1, 2, ..., n\}$ and assume 1 is a *left-identity*:

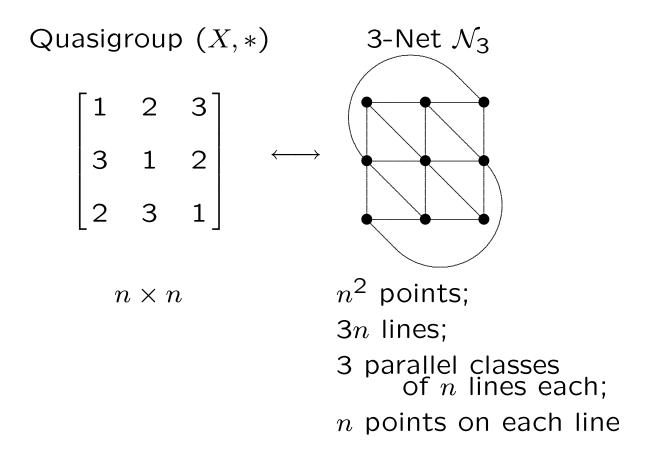
(iii) 1 * x = x for all $x \in X$

The left-multiplication group of (X,*) is the subgroup $G \leq Sym(X)$ generated by all permutations of type (i).

Example: $X = \{1, 2, ..., 13\}$, * has multiplication table

Here $G \cong PSL(3,3) \leq S_{13}$.

A quasigroup (X,*) of order n determines a 3-net, eg.



Problem: Determine the p-rank of \mathcal{N}_3 (i.e. of the point-line incidence matrix of \mathcal{N}_3) in terms of properties of (X,*) or of G.

Let $|X| = n = p^a m$, $p \not\mid m$ (denoted $p^a || n$).

Theorem (1991). $rank_p \mathcal{N}_3 = 3n-2-e$ where $e \leq a$ and

$$|X/Y|=p^e, \quad Y=\bigcap\{Q:Q \text{ normal in }X,\ X/Q \text{ elem. abel. }p\text{-gp}\}.$$

Theorem (2000). $rank_p \mathcal{N}_3 = 3n-2-e$ where e < a and

$$|G/K| = p^e$$
, $K = \bigcap \{L : H \le L \le G, G/L \text{ elem. abel. } p\text{-gp}\};$

here H is the stabilizer of an element of X.

Connection to Projective Planes

Two quasigroups (X,*) and (X,\circ) are orthogonal if the map

$$X^2 \to X^2$$
, $(x,y) \mapsto (x*y, x \circ y)$

is bijective.

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix} \longleftrightarrow \underbrace{ \begin{array}{c} \text{eg. 4-net} \\ \text{(affine plane)} \\ \text{of order 3} \end{array} }$$

$$\begin{array}{c} n-1 \text{ mutually} \\ \text{ orthogonal} \\ \text{ quasigroups} \\ \text{ of order } n \end{array} \right\} \longleftrightarrow (n-1)\text{-net } \mathcal{N}_{n-1} \text{ of order } n \\ \text{ (affine plane)} \\ \longleftrightarrow \text{ projective plane of order } n \\ \end{array}$$

Conjecture (1991). If p||n| then

$$rank_p \mathcal{N}_k - rank_p \mathcal{N}_{k-1} \ge n-k+1.$$

If this Conjecture holds then every projective plane of squarefree order n, or order $n \equiv 2 \mod 4$, is classical with n = p = prime.

Cohomology

Let G be a permutation group on X. Fix a prime field $F = \mathbb{F}_p$.

For $k \ge -1$, a k-cochain is a map $f: X^{k+1} \to F$. These form a vector space $C^k(X)$ of dimension n^{k+1} over F.

The coboundary operator $\partial:C^k\to C^{k+1}$ is the linear transformation $f\mapsto \partial f$ where

$$(\partial f)(x_0, x_1, \dots, x_{k+1})$$

$$= \sum_{i=0}^{k+1} (-1)^i f(x_0, \dots, \widehat{x_i}, \dots, x_k).$$

Then $\partial^2 = 0$, giving the cochain complex

$$0 \xrightarrow{0} F \xrightarrow{\partial} C^{0}(X) \xrightarrow{\partial} C^{1}(X) \xrightarrow{\partial} C^{2}(X) \xrightarrow{\partial} \cdots$$

$$Z^k(X) = \ker(\partial : C^k(X) \to C^{k+1}(X))$$

= $\{k\text{-}cocycles\}\}$
 $\bigcup |$
 $B^k(X) = \operatorname{im}(\partial : C^{k-1}(X) \to C^k(X))$
= $\{k\text{-}coboundaries}\}$

 $C^k(X)$ is a left G-module via

$$(gf)(x_0, x_1, \dots, x_k) = f(gx_0, gx_1, \dots, gx_k)$$

and the action of G commutes with ∂ .

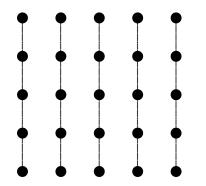
f is G-invariant, denoted $f \in C^k(X)^G$, if gf = f for all $g \in G$.

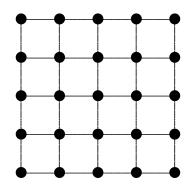
Back to nets...

Consider the 3-net \mathcal{N}_3 corresponding to a quasigroup (X,*) of order n. This has three parallel classes of lines:

$$\ell_{1,a} = \{(a,y) : y \in X\}; \ell_{2,b} = \{(x,b) : x \in X\}; \ell_{3,c} = \{(x,y) : x * y = c\}.$$

Let
$$\mathcal{L}_i = \langle \ell_{i,z} : z \in X \rangle_F$$
. Clearly $\dim_F \mathcal{L}_i = n$; $\dim_F (\mathcal{L}_i + \mathcal{L}_j) = 2n - 1$ for $i \neq j$.





Also

$$\dim(\mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3)$$

$$= \dim(\mathcal{L}_1 + \mathcal{L}_2) + \dim \mathcal{L}_3$$

$$- \dim((\mathcal{L}_1 + \mathcal{L}_2) \cap \mathcal{L}_3)$$

$$= 3n - 1 - \dim((\mathcal{L}_1 + \mathcal{L}_2) \cap \mathcal{L}_3)$$

Lemma. The restriction of $\partial: C^0(X) \to B^1(X)$ to a certain subspace $U \cong ((\mathcal{L}_1 + \mathcal{L}_2) \cap \mathcal{L}_3)$ induces an exact sequence

$$0 \to Z^0(X) \to U \xrightarrow{\partial|_U} B^1(X)^G \longrightarrow 0.$$

Proof.
$$(\mathcal{L}_{1} + \mathcal{L}_{2}) \cap \mathcal{L}_{3}$$

 $\cong U = \{c \in C^{0}(X) : \sum_{x \in X} c(x)\ell_{3,x}$
 $= \sum_{x \in X} (a(x)\ell_{1,x} + b(x)\ell_{2,x}),$
some $b, c \in C^{0}(X)\}.$

Evaluating at (x,y)-(x,1)-(1,y)+(1,1) gives $c\in U$ iff

$$c(x * y) = c(x * 1) + c(y) - c(1)$$
 for all $x, y \in X$.

This implies that the map $\partial c \in B^1(X)$ is G-invariant:

$$(\partial c)(u * x, u * y) = c(u * y) - c(u * x)$$

$$= (c(u * 1) + c(y) - c(1))$$

$$- (c(u * 1) + c(x) - c(1))$$

$$= c(y) - c(x)$$

$$= (\partial c)(x, y).$$

Thus $\partial U \subseteq B^1(X)^G$. Conversely, given $\partial c \in B^1(X)^G$ where $c \in C^0(X)$, we take a(x) = c(x*1), b(x) = c(x) - c(1) to get $c \in U$.

Finally, $\ker(\partial|_U) = U \cap Z^0(X) = Z^0(X)$ since $Z^0(X) \cong F$ consists of constant functions $x \mapsto c$; these lie in U since

$$\sum_{x \in X} c \ell_{3,x} = \sum_{x \in X} (c \ell_{1,x} + 0 \ell_{2,x}).$$

Corollary. $rank_p \mathcal{N}_3 = 3n-2 - \dim B^1(X)^G$.

As before, $|X| = n = p^a m$, $p \nmid m$.

Theorem. dim $B^1(X)^G = e \le a$ where

$$|G/K| = p^e$$
, $K = \bigcap \{L : H \le L \le G, G/L \text{ elem. abel. } p\text{-gp}\};$

here H is the stabilizer of an element of X.

Proof. Denote by V the F-vector space of maps $f: G \to F$ vanishing on H such that

$$f(gh) = f(g) + f(h)$$
 for all $g, h \in G$.

Such maps have $\ker f \supseteq K$ and $\dim V = e$. We construct

$$\phi: B^1(X)^G \stackrel{\cong}{\longrightarrow} V$$

as vector spaces over F. Fix $x_0 \in X$. Given $b \in B^1(X)^G$, define

$$\phi b: G \to F, \quad g \mapsto b(x_0, gx_0).$$

Then $\phi b \in V$ since

$$0 = (\partial b)(x_0, gx_0, ghx_0)$$

$$= b(gx_0, ghx_0) - b(x_0, ghx_0) + b(x_0, gx_0)$$

$$= b(x_0, hx_0) - b(x_0, ghx_0) + b(x_0, gx_0)$$

$$= (\phi b)(h) - (\phi b)(gh) + (\phi b)(g).$$

Clearly $\phi(a+b) = \phi a + \phi b$, and if $\phi b = 0$ then $b(gx_0, hx_0) = b(x_0, g^{-1}hx_0) = (\phi b)(g^{-1}h) = 0$ and the transitivity of G on X gives b = 0.

To show ϕ is onto: Let $f \in V$. Define $c_f \in C^0(X)$ by

$$c_f(gx_0) = f(g).$$

This is well-defined since f vanishes on H, the stabilizer of x_0 . Now

$$(\partial c_f)(x_0, gx_0) = c_f(gx_0) - c_f(x_0)$$

= $f(g) - f(1) = f(g)$

gives $\phi(\partial c_f) = f$.

Finally, K has p^e equal-sized orbits on X, so $p^e|n$ and $e \leq a$.