p-Ranks of Nets

G. Eric Moorhouse University of Wyoming

Motivation

A projective plane of order n has

$$n^2 + n + 1$$
 points;

$$n^2 + n + 1$$
 lines;

n+1 points on each line;

n+1 lines through each point.

Example: The projective plane of order n=2

7 points

7 lines

3 points on each line

3 lines through each point

Open Problems

- Must every finite projective plane have prime power order?
- Must every projective plane of prime order n=p be classical? (points = 1-dim subspaces of \mathbb{F}_p^3 , lines = 2-dim subspaces)

Brief History

Theorem (Bruck and Ryser, 1949). If there is a projective plane of order $n \equiv 1,2 \mod 4$, then $n = a^2 + b^2$.

Proof uses congruence of rational quadratic forms.

Although $10 = 1^2 + 3^2$, we have

Theorem (Lam et al., up through 1989). There is no projective plane of order 10.

Proof uses the fact that the extended binary code \mathcal{C} of the plane is self-dual. This restricts the weight enumerator of \mathcal{C} . The computer is used extensively to eliminate possibilities for small weight codewords.

These approaches are global.

A more local approach:

$$\begin{array}{c} \text{proj. plane} \\ \text{of order } n \end{array} \longleftrightarrow \begin{cases} n-1 \text{ mutually} \\ \text{orthogonal} \\ \text{quasigroups on} \\ X = \{1,2,3,\ldots,n\} \end{cases}$$

Two quasigroups (X,*), (X,\circ) are *orthogonal* if the map

$$X \times X \to X \times X, \qquad (x,y) \mapsto (x * y, x \circ y)$$
 is bijective.

WLOG these quasigroups all have left identity 1:

$$1 * x = x$$
 for all $x \in X$

The *left-multiplication group of* (X,*) is the subgroup $G_* \leq Sym(X)$ generated by all permutations

$$\lambda_a: X \to X, \quad x \mapsto a * x$$

for $a \in X$.

Isotopic quasigroups (X,*), (X,\circ) need not have equivalent left-multiplication groups.

But if both (X,*), (X,\circ) have left-identity then there exists an isomorphism $\phi:G_*\to G_\circ$ and a bijection $\theta:X\to X$ such that for all $g\in G_*$, the diagram

$$X \xrightarrow{g} X$$

$$\theta \downarrow \qquad \qquad \downarrow \theta$$

$$X \xrightarrow{\phi(g)} X$$

commutes.

The p-rank concept

If A is any matrix with integer entries,

$$\operatorname{rank}_p(A) = \operatorname{rank} \operatorname{of} A$$

over any field of
prime characteristic p

The p-rank of any point-line incidence structure is the p-rank of its point-line incidence matrix, e.g.

$$\operatorname{rank}_{p}\left(\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array}\right) = \operatorname{rank}_{p}\left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$$
$$= \left\{\begin{array}{ccc} 2, & \text{if } p = 2; \\ 3, & \text{otherwise.} \end{array}\right.$$

Typically, the *more 'symmetric'* a structure with given parameters, the *lower* its p-rank for certain choices of the prime p which depend on the parameters.

A quasigroup (X,*) of order n determines a 3-net, eg.

Problem: Determine the p-rank of \mathcal{N}_3 in terms of algebraic properties of (X,*) or of G_* .

Let $|X| = n = p^a m$, $p \not\mid m$ (denoted $p^a || n$).

Theorem (1991). rank $_p\mathcal{N}_3=3n-2-e$ where e < a and

$$|X/Y|=p^e, \quad Y=\bigcap\{Q: Q \ normal \ in \ X, \ X/Q \ elem. \ abel. \ p-gp\}.$$

Theorem (2000). rank $_p\mathcal{N}_3=3n-2-e$ where e < a and

$$|G_*/K| = p^e$$
, $K = \bigcap \{L : H \le L \le G_*, G_*/L \text{ elem. abel. } p\text{-gp}\};$

here H is the stabilizer of an element of X.

Nets

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix} \longleftrightarrow \underbrace{ \begin{array}{c} \text{eg. 4-net} \\ \text{(affine plane)} \\ \text{of order 3} \end{array} }$$

$$\begin{array}{c} n-1 \text{ mutually} \\ \text{ orthogonal} \\ \text{ quasigroups} \\ \text{ of order } n \end{array} \right\} \longleftrightarrow (n-1)\text{-net } \mathcal{N}_{n-1} \text{ of order } n \\ \text{ (affine plane)} \end{array}$$

 \longleftrightarrow projective plane of order n

Conjecture (1991). If p||n| then

$$\operatorname{rank}_p \mathcal{N}_k - \operatorname{rank}_p \mathcal{N}_{k-1} \ge n-k+1.$$

If this Conjecture holds then every projective plane of squarefree order n, or order $n \equiv 2 \mod 4$, is classical with n = p = prime.

The conjecture holds for

- (i) $k \le 3$;
- (ii) translation nets with an abelian translation group (in particular equality holds in the classical case);
- (iii) 4-nets of prime order with a central translation (i.e. 4-nets constructible from $3 \times p$ difference matrices over a group of prime order p);
- (iv) direct products of smaller nets which also satisfy the conjecture.

Proof techniques:

loop 'characters' or group theory;

group algebras over \mathbb{F}_p , in particular Jennings' 1941 study of the powers of the augmentation ideal.

This suggests using quasigroup algebras over \mathbb{F}_p in the general case.

Back to 3-nets...

Consider the 3-net \mathcal{N}_3 corresponding to a quasigroup (X,*) of order n. This has three parallel classes of lines:

$$\ell_{1,a} = \{(a,y) : y \in X\};$$

$$\ell_{2,b} = \{(x,b) : x \in X\};$$

$$\ell_{3,c} = \{(x,y) : x * y = c\}.$$

Let
$$\mathcal{L}_i = \langle \ell_{i,z} : z \in X \rangle_F$$
, $F = \mathbb{F}_p$. Clearly $\dim_F \mathcal{L}_i = n$; $\dim_F (\mathcal{L}_i + \mathcal{L}_j) = 2n{-}1$ for $i \neq j$.

Also

$$\dim(\mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3)$$

$$= \dim(\mathcal{L}_1 + \mathcal{L}_2) + \dim \mathcal{L}_3$$

$$- \dim((\mathcal{L}_1 + \mathcal{L}_2) \cap \mathcal{L}_3)$$

$$= 3n - 1 - \dim((\mathcal{L}_1 + \mathcal{L}_2) \cap \mathcal{L}_3)$$

Lemma. We have an exact sequence

$$0 \to F \to (\mathcal{L}_1 + \mathcal{L}_2) \cap \mathcal{L}_3 \xrightarrow{\partial} B^1(X)^{G_*} \longrightarrow 0$$

where $B^1(X)^{G_*}$ is the set of all maps $X \times X \to F$ of the form $(x,y) \mapsto f(y) - f(x)$ which are G_* -invariant, i.e.

$$f(y) - f(x) = f(gy) - f(gx)$$
 for all $g \in G_*$.

Corollary. rank $_p\mathcal{N}_3=3n-2-\dim B^1(X)^{G_*}$.

More generally, let G be a transitive permutation group on X, $|X| = n = p^a m$, $p \not\mid m$.

Theorem. dim $B^1(X)^G = e \le a$ where

$$|G/K| = p^e$$
, $K = \bigcap \{L : H \le L \le G, G/L \text{ elem. abel. } p\text{-gp}\};$

here H is the stabilizer of an element of X.