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Motivation

A projective plane of order n has
n2 +n 4+ 1 points:
n? 4+ n 4+ 1 lines:
n + 1 points on each line;
n + 1 lines through each point.

Example: The projective plane of order n = 2

7 points

7 lines

3 points on each line

3 lines through each point

Open Problems

e Must every finite projective plane have prime
power order?

e Must every projective plane of prime or-
der n = p be classical? (points = 1-dim
subspaces of IE“3, lines = 2-dim subspaces)



Brief History

Theorem (Bruck and Ryser, 1949). Ifthere
is a projective plane of order n=1,2 mod 4,
then n = a? + b2.

Proof uses congruence of rational quadratic
forms.

Although 10 = 12 4+ 32, we have

Theorem (Lam et al., up through 1989).
There is no projective plane of order 10.

Proof uses the fact that the extended binary
code C of the plane is self-dual. This restricts
the weight enumerator of C. The computer is
used extensively to eliminate possibilities for
small weight codewords.

These approaches are global.



A more local approach:

(n—1 mutually
orthogonal
quasigroups on

X ={1,2,3,...,n}

proj. plane}
of order n

7\

Two quasigroups (X, *), (X, o) are orthogonal
if the map

XxX—>XxX, (z,y) — (xxy, zoy)

IS bijective.

WLOG these quasigroups all have left iden-
tity 1:

lxx=x forallze X



The left-multiplication group of (X, *) is the
subgroup G« < Sym(X) generated by all per-
mutations

Ao X =X, z—ax*xx

for a € X.

Isotopic quasigroups (X, x*), (X,o0) need not
have equivalent left-multiplication groups.

But if both (X,x), (X,0) have left-identity
then there exists an isomorphism ¢ : Gx — Go
and a bijection 8 : X — X such that for all
g € G, the diagram

x 74 .x
0 0
e ¢(g) e

commutes.



The p-rank concept

If A is any matrix with integer entries,

rankp(A) = rank of A
over any field of
prime characteristic p

The p-rank of any point-line incidence struc-
ture is the p-rank of its point-line incidence
matrix, e.g.

O 1 1
rankp< ii ) rankp |1 0 1
1 1 O

{2, if p =2,
3, otherwise.

Typically, the more ‘symmetric’ a structure
with given parameters, the lower its p-rank for
certain choices of the prime p which depend
on the parameters.



A quasigroup (X, x*) of order n determines a
3-net, eg.

Quasigroup (X, ) 3-Net N3

1 2 3
3 1 2|

nxn n2 points;
3n lines;

3 parallel classes
of n lines each;

n points on each line

Problem: Determine the p-rank of N3 in terms
of algebraic properties of (X, *) or of Gx.



Let | X| =n=p%m, p}[m (denoted p?||n).

Theorem (1991). rank,N3 = 3n—2—e where
e<a and

X/Y|=p% Y=({Q:Q normalin X,
X/Q elem. abel. p-gp}.

Theorem (2000). rankpN3 = 3n—2—e where
e<a and

G«/K| =p° K=(\{L :H<L<<Gx,
G«/L elem. abel. p-gp};

here H is the stabilizer of an element of X.



Nets

k—2 mutually (k-net N, of order n:

orthogonal n2 points, nk lines:
quasigroups

of order n ) k parallel classes
(k < n+1) of n lines each;
>N )

n points on each line

I

\

1 2 3|1 2 3

egd. 4-net
3 1 2 3 1| (affine plane)
>3 1|3 1 2 of order 3

n—1 mutually

orthogonal L', 1) net A,_; of order n

uasigroups :
gf orc?er np (affine plane)

«—— projective plane of order n



Conjecture (1991). If p||n then

rankpNg — rankpNi_1 > n—k+1.

If this Conjecture holds then every projective
plane of squarefree order n, or order n = 2
mod 4, is classical with n = p = prime.



The conjecture holds for
(i) <3

(ii) translation nets with an abelian transla-
tion group (in particular equality holds in the
classical case);

(iii) 4-nets of prime order with a central trans-
lation (i.e. 4-nets constructible from 3 x p dif-
ference matrices over a group of prime or-
der p);

(iv) direct products of smaller nets which also
satisfy the conjecture.

Proof techniques:
loop ‘characters’ or group theory;

group algebras over Fy, in particular Jennings’
1941 study of the powers of the augmentation
ideal.

This suggests using quasigroup algebras over
Fp in the general case.



Back to 3-nets...

Consider the 3-net N3 corresponding to a quasi-
group (X, x) of order n. This has three parallel
classes of lines:

l1,a = {(a,y) 1y € X},

lop = {(z,b) 1z € X},

(3. ={(z,y) iz xy =c}.

Let £; =(¢;, : z € X)p, F =TF,. Clearly
dimp L; = n,;
dimp(L; + £;) = 2n—1 for i # j.

Also

dim(L1+Lo+L3)
=dim(£L1+L2) +dim L3
— dim((£1+£2) N L3)
=3n—1—-dim((L14+Ly) N L3)



Lemma. We have an exact sequence

0 — F — (L14+L)NLs 25 BL(x)G+— 0

where BL(X)C* js the set of all maps X x X —
F of the form (z,y) — f(y) — f(x) which are
Gs-invariant, i.e.

fly) — f(x) = f(gy) — f(gz) forall g€ G«.
Corollary. rankyN3 = 3n—2 — dim B1(X)5*.

More generally, let G be a transitive permu-
tation group on X, |X| =n = p*m, p fm.

Theorem. dim B1(X)& = e < a where

G/K|=p° K=(|{L:H<LALG,
G/L elem. abel. p-gp};

here H is the stabilizer of an element of X.



