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Known Planes of Order 25

Translation planes al,...,a8; b1l,...,b8; s1,...,s5 classified by
Czerwinski & Oakden (1992)






Aut(w1)| = 19200

Aut(w2)| = 3200

The Wyaming Planes



Thanks to my coauthor...




Thanks to nauty and GAP !

I make extensive use of Brendan McKay's software pack-
age nauty; also GAP for group computations.

Given a graph [, nauty will determine
e the automorphism group of I, and

e a ‘canonical’ representative of the isomorphism class
of . (Thus I 2 I’ iff the graphs " and I’ have the same
canonical representative.)

This can be applied to the incidence graph ' of a pro-
jective plane Il of order n. This is a bipartite graph with
2(n? 4+ n+ 1) vertices (one for each point/line of M) and
edges corresponding to incident point-line pairs. Note
that Aut('p) is the group of all collineations and corre-
lations of . If desired, nauty can preserve the two parts

of the partition, thereby obtaining just the collineations
of 1.



Limitations of nauty
Projective planes are time-consuming cases for nauty.

Planes of order 16 require minutes with Gordon Royle's
invariant cellfano2). Planes of order 25 or 27 require
hours or days. Planes of order 32 are infeasible.

A new idea is needed!



Better Approach: ‘Conway Doubling’

Let 'l be a projective plane of order n. We define a graph
Apn with 4(n? 4+ n 4+ 1) vertices (roughly a double cover
of the non-incidence graph I'n) such that

® An £ Anl iff rr] = l‘n, iff M= Fl’;

e Aut(Ap) is usually much faster to compute than
Aut(Mn), and

e Aut(N) = Aut(An)/Z (where
Z C Z(Aut(Anpn))) is easily obtained.

Definition of A

Let FF = {0,1} be the field of order two. Vertices of Ap
are of the form (P,%),(L,j) where P and L are a point
and line of I, and ¢,57 € F'. Adjacency ...



Index the points on each line using 0.1,2,....n using a
fixed (but arbitrary) ordering. Index the lines through
each point using 0,1.2.....n. For each non-incident P, L
in 1, we obtain a permutation op j of the symbols 0,1,2,...,n.

There are two types of edges in Ap:

D (P,2) ~ (L,5) iff
P ¢ L and sgn(op) = (—=1)"17

aim (P,0) ~ (P, 1), (L,0)~(L,1)

Type (I) edges form a double cover of I'p. Type (II)
edges ensure that Ap is connected; without them, An
could be two disjoint copies of 'p, with automorphism
group Aut(lMn):2. (This happens if N is a classical plane
of even order.)



Z C Z(Aut(Apn)) is the subgroup of order two generated
by

(P,0) & (P,1), (L,0) < (L,1).

Theorem. Aut(Ap)/Z = Aut(I'n) = Aut().



Where do the new planes come from?



quotient by T, an\

automorphism of
order 2
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Given a projective plane P with involution T € Aut(I),

let /T be the incidence structure induced on point
and line orbits of size 2.

/T yields a cell complex A having
e vertices (0-cochains): points, blocks of T/t
e edges (1-cochains): flags of /T

e square faces (2-cochains): “digons” of T/t

N
/.QQ<

C' = Cc/(n,TF,) = F,-space of i-cochains

o ol
coboundary map 0 —» ¢l — 2

H! = H1(A,IF,) = ker 61 / im o0



If H1 = 0 then I/t lifts uniquely back to I.

Theorem.

Eq.uwalence clas§es of orbits of Aut(I/T)
pairs (I1,T) covering = on HY(A,T,)
the same M/t

C' = Cc/(n,TF,) = F,-space of i-cochains

o ol
coboundary map 0 —» ¢l — 2

H! = H1(A,IF,) = ker 61 / im o0



If H1 = 0 then I/t lifts uniquely back to I.

Theorem.

Eq.uwalence cIassgs of orbits of Aut(I/T)
pairs (I1,T) covering = on HY(A,T,)
the same M/t

actually, a particular
coset of H1=71/B!
in C1/B1...
C' = Cc/(n,TF,) = F,-space of i-cochains

o ol
coboundary map 0 —» ¢l — 2

H! = H1(A,IF,) = ker 61 / im o0



If H1 = 0 then I/t lifts uniquely back to I.

Theorem.

Eq.uwalence clas§es of orbits of Aut(I/T)
pairs (I1,T) covering = on HY(A,T,)
the same M/t

In all cases I have examined, dim H(A,TF,) < 4.



For any given plane I1,

e compute G=Aut();

e find a representative T for each conjugacy class
of involutions in G;

e compute H1
o if H1 + 0, find orbits of Aut(ll/t) on H1.



Known Planes of Order 25

Translation planes al,...,a8; b1l,...,b8; s1,...,s5 classified by
Czerwinski & Oakden (1992)



Other instances of non-unique lifting
(among planes of order 16)

Johnson-Walker Dempwolff
plane plane

\ /

quotient



Other instances of non-unique lifting
(among planes of order 16)

Lorimer-Rahilly derived semifield
plane plane

\ /

quotient



Other instances of non-unique lifting
(among planes of order 16)

semifield plane semifield plane
over I¥, over ¥,

\ /

quotient



Other instances of non-unique lifting
(among planes of order 16)

Mathon dual Mathon
plane plane

\ /

quotient



Other instances of non-unique lifting
(among planes of order 9)

Desarguesian Hughes
plane plane

\ /

quotient



Why only consider involutions T € Aut(l)?

In this case the problem of lifting /T to Tl
amounts to solving a linear system.

In any double cover, the fibres are necessarily
T-orbits for some involution T.



Also tested:

e the 18 smallest known generalised quadrangles;

e the 4 smallest known generalised hexagons;
e the smallest known generalised octagon.

In only one case is H! nontrivial:
dim H1 =1 for the GQ with s=3, t=5.

We are having to solve linear systems over I, with
thousands of unknowns.

Space constraints (computer memory) is the chief
limitation in testing larger generalised polygons.



