Good Packings

Eric Moorhouse MUN and University of Wyoming

Ovoids from Number Theory

Let $p \equiv 1 \mod 4$ be prime, and let \mathcal{O}_p be the set of integer vectors (x_1, \ldots, x_6) such that

$$x_1 \equiv x_2 \equiv \dots \equiv x_6 \equiv 1 \mod 4;$$

 $x_1^2 + x_2^2 + \dots + x_6^2 = 6p.$

Then
$$|\mathcal{O}_p| = p^2 + 1$$
.

Example: p = 5

Solve

$$x_1 \equiv x_2 \equiv \dots \equiv x_6 \equiv 1 \mod 4;$$

 $x_1^2 + x_2^2 + \dots + x_6^2 \equiv 6.5 \equiv 30.$

Solutions:

$$\mathcal{O}_5 = \{ (5, 1, 1, 1, 1, 1)^*, (6 \text{ such}) \\ (-3, -3, -3, 1, 1, 1)^* \} (20 \text{ such})$$

Total
$$|\mathcal{O}_5| = 26 = 5^2 + 1$$

* denotes 'all 6! = 720 permutations thereof'

Example: p = 13

Solve

$$x_1 \equiv x_2 \equiv \dots \equiv x_6 \equiv 1 \mod 4;$$

 $x_1^2 + x_2^2 + \dots + x_6^2 = 6.13 = 78.$

Solutions:

$$\mathcal{O}_{13} = \{(-7, 5, 1, 1, 1, 1)^*, \quad (30 \text{ such}) \\ (5, 5, 5, 1, 1, 1)^*, \quad (20 \text{ such}) \\ (-7, -3, -3, -3, -3, 1, 1)^*, \quad (60 \text{ such}) \\ (5, 5, -3, -3, -3, -3, 1)^*\} \quad (60 \text{ such})$$

Total $|\mathcal{O}_{13}| = 170 = 13^2 + 1$

* denotes 'all 6! = 720 permutations thereof'

More Ovoids from Number Theory

Let $p \equiv 1 \mod 4$ be prime, and let \mathcal{O}'_p be the set of integer vectors (x_1, \ldots, x_6) such that

$$x_1+1 \equiv x_2 \equiv x_3 \equiv \cdots \equiv x_6 \mod 2;$$
$$\sum x_i \equiv 3 \mod 4;$$
$$x_1^2+x_2^2+\cdots+x_6^2=p.$$

Then $|\mathcal{O}_p'| = p^2 + 1$.

Example: p = 5

Solve

$$x_1+1 \equiv x_2 \equiv x_3 \equiv \cdots \equiv x_6 \mod 2;$$
$$\sum x_i \equiv 3 \mod 4;$$
$$x_1^2+x_2^2+\cdots+x_6^2=5.$$

Solutions:

$$\mathcal{O}_{5}' = \{ \underbrace{(0|\pm 1,\pm 1,\pm 1,\pm 1,\pm 1), (16 \text{ such})}_{(1|\pm 2,0,0,0,0)}$$
(10 such)
fotal
$$\boxed{|\mathcal{O}_{5}'| = 26 = 5^{2} + 1}$$

Total

Numbertheoretic ovoids

 $x_1^2 + x_2^2 + \dots + x_6^2 = 6p$

At each step we have an optimal packing.

What is the densest possible packing of (nonoverlapping) uniform disks in the plane?

The densest plane packing is the hexagonal lattice packing: centres of the disks are points of the A₂ (hexagonal) lattice

 $L = \{au + bv : a, b \in \mathbb{Z}\}$

A *lattice* in \mathbb{R}^n is a subset

 $L = \{a_1v_1 + a_2v_2 + \dots + a_nv_n : a_1, a_2, \dots, a_n \in \mathbb{Z}\}$ where v_1, v_2, \dots, v_n is a basis for \mathbb{R}^n over \mathbb{R} .

The *theta series* of L is

$$\Theta_L(z) = \sum_{v \in L} q^{\|v\|^2}$$
 where $q = e^{\pi i z}$,

convergent for |q| < 1, i.e. Re(z) > 0.

E.g. the theta series of the A_2 lattice

$\Theta(z) = 1 + 6q + 6q^3 + 6q^4 + 12q^7 + \cdots$

Face Centred Cubic (A₃ lattice) Packing

Theorem (Hales 1997)

This is the densest sphere packing in \mathbb{R}^3 .

oblique view

Theta series of the A₃ lattice

$\Theta(z) = 1 + 12q^2 + 6q^4 + 24q^6 + \cdots$

The E_8 lattice in \mathbb{R}^8 is especially dense:

densest lattice in R⁸;
 densest known sphere packing in R⁸

Theta series of the E_8 lattice in \mathbb{R}^8

е

$$\Theta(z) = 1 + 240q^{2} + 2160q^{4} + 6720q^{6} + \cdots$$

= 1 + 240 $\sum_{m=1}^{\infty} \sigma_{3}(m)q^{2m}$
where
 $\sigma_{3}(m) = \sum_{d|m} d^{3}$
.g. $\sigma_{3}(1) = 1^{3} = 1;$
 $\sigma_{3}(p) = p^{3} + 1$ for p prime

Packings in Euclidean space

Packings in discrete spaces

sphere packings

e.g. theory of error-correcting codes

Finite fields

For every prime p, $\mathbb{F}_p = \{0, 1, 2, ..., p-1\}$ is the field of integers mod p.

For each p^k there is a field \mathbb{F}_{p^k} of order $|\mathbb{F}_{p^k}| = p^k$. This is *not* the integers mod p^k unless k=1.

Most algebraic properties of \mathbb{F}_{p^k} , and geometric properties of the spaces they coordinatise, hold uniformly for all p^1 , p^2 , p^3 , ... (But we will see an exception where p^1 is special.)

Sample Packing Problem

Tile this figure using 2×1 dominoes.

One, of several, solutions.

Such a complete tiling we'll call a *spread*.

This figure has *no spread* of dominoes:

Sample Packing Problem

Tile this figure using 2×1 dominoes.

One, of several, solutions.

Such a complete tiling we'll call a *spread*.

This figure has *no spread* of dominoes:

The Dual Packing Problem

Find a set of cells meeting each domino exactly once.

One of two solutions. Such a set of cells we'll call an *ovoid*.

Why is this problem dual to the previous one?

"Lines" (dominoes)

bipartite graph:

"Lines" (dominoes)

"Lines" (dominoes)

"Lines" (dominoes)

Spread

Definitions

Given:

- ullet a set $\mathcal P$ of "points", and
- a collection \mathcal{B} of "blocks" or "lines" (certain subsets of \mathcal{P})

An *ovoid* is a point set $\mathcal{O} \subseteq \mathcal{P}$ such that each block contains exactly one point of \mathcal{O} .

Dually,

A *spread* is a set of blocks $\Sigma \subseteq \mathcal{B}$ which partitions the point set \mathcal{P} .

Spread of 3-space $P^3\mathbb{F}$: a set of lines partitioning the points

E.g. the simplest spread of $P^3\mathbb{R}$:

Take all complex 1-dimensional subspaces of $\mathbb{C}^2=\mathbb{R}^4$.

These partition the points of $P^3\mathbb{R}$ into projective lines (real 2-subspaces).

Spread of 3-space $P^3\mathbb{F}_p$: a set of lines partitioning the points

no. of points in 3-space = $(p^2 + 1)(p + 1)$

Ovoids and Spreads of Quadrics

Consider the quadric

$$\mathcal{Q}: \quad x_1^2 + x_2^2 + \dots + x_n^2 - y_1^2 - y_2^2 = 0$$

in \mathbb{R}^{n+2} , $n \ge 2$. Define

 $\mathcal{P} = \{1 \text{-dimensional subspaces in } \mathcal{Q}\}$ $\mathcal{B} = \{2 \text{-dimensional subspaces in } \mathcal{Q}\}$

Shown: case
$$n = 2$$

This quadric has two spreads:

and many ovoids, e.g. $\mathcal{O} = \{(x_1, \dots, x_n, 1, 0) : x_1^2 + x_2^2 + \dots + x_n^2 = 1\}$

All quadrics in $P^n\mathbb{R}$ have ovoids but not all have spreads.

For finite \mathbb{F} : existence of ovoids and spreads in $P^n\mathbb{F}$ quadrics depends on n and $|\mathbb{F}|$. No ovoids are known for n > 7.

Any ovoid or spread in in a $P^{2n}\mathbb{F}_p$ or in $P^{2n+1}\mathbb{F}_p$ quadric has size p^n+1 . All quadrics in $P^n\mathbb{R}$ have ovoids but not all have spreads.

For finite \mathbb{F} : existence of ovoids and spreads in $P^n\mathbb{F}$ quadrics depends on n and $|\mathbb{F}|$. No ovoids are known for n > 7.

Ovoids do not exist in

- $P^{2n}\mathbb{F}$, $n \ge 4$ (Gunawardena and M., 1997);
- $P^{9}\mathbb{F}$, $|\mathbb{F}|=2^{k} \text{ or } 3^{k}$ (Blokhuis and M., 1995);
- $P^{11}\mathbb{F}$, $|\mathbb{F}|=2^k$, 3^k , 5^k or 7^k (Blokhuis and M., 1995); etc.

Some ovoids of quadrics in $P^7 \mathbb{F}_p$ discovered by John H. Conway (1988)

The E_8 lattice has $240\sigma_3(p) = 240(p^3+1)$ vectors of length $\sqrt[4]{2}p$. Let $x \in E_8$ of length $\sqrt[4]{2}$ (one of 240 *root vectors*). The sublattice $\mathbb{Z}x + 2E_8$ has p^3+1 pairs of vectors $\pm v$. This gives an ovoid mod p.

Ovoids of $P^7\mathbb{F}_p$ quadrics

Conway (1988) construction

- 1. Shows existence of at least one ovoid for every p
- 2. Proof requires theta series of E_8 :

Generalised construction by M. (1993, 1997)

1. Number of

- ovoids $ightarrow \infty$ as $p
 ightarrow \infty$
- 2. Proof requires theta series of $E_8 \oplus E_8$:

 $1+480\sum_{m}\sigma_{7}(m)q^{2m}$

pair of intersecting lines of $P^3\mathbb{F}_p$ pair of points of $P^5\mathbb{F}_p$ quadric on a line of the quadric

pair of skew lines of $P^3\mathbb{F}_p$

pair of points of $P^5\mathbb{F}_p$ quadric not on a line of the quadric

spread of $P^3\mathbb{F}_p$ $p^{2}+1$ mutually skew lines ovoid of $P^5 \mathbb{F}_p$ quadric p^{2+1} mutually noncollinear points

Spread of 3-space

Translation plane (affine or projective plane)

 p^4 points: points of \mathbb{F}^4

spread of $\mathbb{P}^{3}\mathbb{F}$, $\mathbb{F} = \mathbb{F}_{p}$ spread at infinity defines the $p^2(p^2+1)$ 'lines' each of size p^2

... but first, a proof that $P^5\mathbb{F}$ quadrics have no spreads

Projective 3-space $P^3\mathbb{F}$

Projective 3-space $P^3\mathbb{F}$

No 9-dimensional ovoids are known!

No 9-dimensional ovoids are known!

Is the apparent lack of ovoids in $P^9\mathbb{F}_p$ due to a lack of dense lattices in \mathbb{R}^{10} ? Try to generalise this to ovoids over \mathbb{F}_{p^k} :

 $E_8/pE_8 \cong$ Let \mathcal{A} be the ring of algebraic integers in a number field of degree k over \mathbb{Q} .

 $L = E_8 \otimes_{\mathbb{Z}} \mathcal{A}$ is a lattice over \mathcal{A} ; $L/pL \cong \mathbb{F}_{p^k}^{-8}$

Try to choose vectors in shells of L and reduce mod p to get ovoids.

This fails!

Lubotzky, Phillips and Sarnak (1988): Explicit construction of Ramanujan graphs (sparse but highly connected graphs) using theta series of $\mathbb{Z}^4 = A_1 \oplus A_1 \oplus A_1 \oplus A_1$:

$$\Theta(z) = 1 + 8 \left(\sum_{\substack{d \mid m \\ d \neq 0 \mod 4}} d\right) q^{m}$$

For odd primes p, the coefficient of q^p is 8(p+1)(but this exact value is not required, only its rate of growth).