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Ovoids from Number Theory

Let p=1 mod 4 be prime, and let O, be the set
of integer vectors (x1,...,zg) such that

r1=x0=---=x6 =1 mod 4,
a:%—l—:z:%—l—---—l—x%:Gp.

Then |Op| = p? + 1.



Example: p=5

Solve
r1=x0=---=x6 =1 Mod 4,
2 2 g —
$1—|—332+ —|—CC6—6 = 50).
Solutions:
Os = {(5,1,1,1,1,1)*, (6 such)
(-3,-3,-3,1,1,1)*} (20 such)
Total 05| =26 =52+1

* denotes ‘all 6! = 720 permutations thereof’



Example: p =13

Solve
r1=x0=---=x6 =1 Mmod 4;
2 2 - —
5131"- 2—|— —I— 6 — 6-13 = 78.
Solutions:
013 — {(_77571717171)*) (30 SUCh)
(5,5,5,1,1,1)*, (20 such)
(-7,-3,-3,-3.1,1)*, (60 such)
(5,5,—3,—3,—-3,1)*} (60 such)
Total 013 =170 =132+ 1

* denotes ‘all 6! = 720 permutations thereof’



More Ovoids from Number Theory
Let p=1 mod 4 be prime, and let O, be the set
of integer vectors (x1,...,xg) such that

ri+l=z0=2x3=:--- =26 MOd 2;
Y z; =3 mod 4;
az%—l—az%—l—---—l—:p%:p.

Then |Op| = p2 + 1.



Example: p=5

Solve
r1+l=xz0=2x3=---= 26 MOd 2;
Y z; =3 mod 4;
ZU%—FCC%—'-'“—FQZ%:S.
Solutions:
Os = (O] +£1,4+1,4+1.4+1,+1), (16 such)

(1] £2,0,0,0,0)} (10 such)

Total 05| =26 =52+ 1
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At each step we have an optimal packing.
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A lattice in R™ is a subset

L = {ajvy +asvo + - -+ anvn : ai,an,...,an € Z}

where vq1,vo,...,vn IS a basis for R™ over R.

The theta series of L is

2 .
O (z) = Z q”U” where g =™,
veL

convergent for |q| < 1, i.e. Re(z) > O.



E.g. the theta series
of the A lattice /




Face Centred Cubic (A5 lattice) Packing

Theorem
(Hales 1997)

This is the densest
sphere packing in R3.

oblique view



Theta series of the A lattice

O(2) = 1+ 12¢° + 6¢% + 244¢°
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Theta series of the Eg lattice in RS
O(z) = 1+ 240¢° + 2160q¢* + 6720¢° + - - -

=1+240) o3(m)g®™

m=1

where

o3(m) =) d°

d|m

e.g. o3(1) = 13 — 1:
o3(p) = p3 + 1 for p prime



Packings in

Packings in
Euclidean 0 discrete
spaces

space

_ e.g. theory of
sphere packings error-correcting
codes



Finite fields

For every prime D,
F,=10, 1,2, ..., p-1}
is the field of integers mod p.

For each pX there is a field I, of order [F|= pk.
This is not the integers mod pk unless k=1.

Most algebraic properties of Fpk,and geometric

properties of the spaces they coordinatise, hold
uniformly for all pt, p?, p3, ... (But we will see
an exception where p! is special.)



Sample Packing Problem

Tile this figure II I
One, of several, solutions.

using 2 x 1 dominoes. -
Such a complete tiling we'll call a spread.

T his figure

has no spread of dominoes:




Sample Packing Problem

Tile this figure II I
One, of several, solutions.

using 2 x 1 dominoes. -
Such a complete tiling we'll call a spread.

T his figure

has no spread of dominoes:




T he Dual Packing Problem

Find a set of cells
meeting each domino
exactly once.

One of two solutions.
Such a set of cells we'll call an ovoid.

Why is this problem dual to the previous one?
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bipartite graph:
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“Lines” (dominoes)
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Definitions

Given:

e a set P of “points’, and
e a collection B of “blocks” or “lines” (certain

subsets of P)

An ovoid is a point set © C P such that each block
contains exactly one point of O.

Dually,

A spread is a set of blocks > C B which partitions
the point set P.



Spread of 3-space P3F:
a set of lines partitioning the points

E.g. the simplest
spread of P°R:

Take all complex
1-dimensional
subspaces of C2=IR4,

These partition the
points of PR into

projective lines
(real 2-subspaces).




Spread of 3-space P°F:
a set of lines partitioning the points

" no. of

lines in

spread | no. of
points
per line

‘- \Y# \
no. of points in 3-space = (p2+ 1)(p + 1)



Ovoids and Spreads of Quadrics

Consider the quadric
Q: a:%—l—a:%—l—---—kaz,,%—y%—y%:O
in R* T2 5 > 2. Define

P = {1-dimensional subspaces in 9O}
B = {2-dimensional subspaces in 9}

Shown: casen =2




This quadric has two spreads:

2 1. 2 5.

and many ovoids, e.d.
O={(x1,...,2zn,1,0) : w%+w%+---—|—$%:1}



All quadrics in P"R have ovoids
but not all have spreads.

For finite IF': existence of ovoids

and spreads in P'[F' quac
depends on n and |F|.

rics

No ovoids are known forn> /.

Any ovoid or spread in
in a PZ”IFp or in P2”+1IFp quadric

has size p"+1.



All quadrics in P"R have ovoids
but not all have spreads.

For finite [F: existence of ovoids
and spreads in P'IF quadrics

depends on n and |F|.
No ovoids are known for n> 7.

Ovoids do not exist in
e P n >4 (Gunawardena and M., 1997);

e PF, |F|=2% or 3% (Blokhuis and M., 1995);

e PLF, |F|=2%, 3%, 5K or 7K (Blokhuis and M.,
1995); etc.




Some ovoids of
quadrics in P7IFp
discovered by
John H. Conway
(1988)




Conway’s ovoids in P7IF, quadrics

sphere of ®
radius \/Z_p

in [R®

The Eg lattice has 2400,(p) = 240(p3+1) vectors of length \/2_p
Let X € Egof length {2 (one of 240 root vectors).

The sublattice Zx + 2Eg has p3+1 pairs of vectors V.
This gives an ovoid mod p.



Ovoids of P7IFp quadrics

Conway (1988)
construction

. Shows
existence of at
least one ovoid

for every p

. Proof requires

theta series of Eg:

142402, c,(m)g2m

Generalised
construction by
M. (1993, 1997)

. Number of

ovoids — o0
as p—o0

. Proof requires theta

series of Eg®Eg:

1+4802. .0,(M)g2



S
N
)

Ovoids Ovoids

N
Spreads Projective
E; lattice # of PIF, of PIF, 6 in P°F,, planes

quadrics guadrics




Conway, Kleidman,
Wilson (1988);
M. (1993, 1997)

Ovoids Ovoids S iacti
preads Projective
E, lattice # of P7I, of P°IF, in P°F, planes
guadrics guadrics




slicing
a P’IF ovoid
gives a P~ ovoid

OVO;C'S OVOLdS Spreads Projective
E; lattice of P7IF, # of P°IF, in P°F, planes
guadrics guadrics




Plicker map ...

Ovoids Ovoids S iecti
preads Projective
E; lattice of P7I, of P°IF, in P°F,, planes
quadrics guadrics




Plicker map

line of P3IFp point of P5IFp quadric



Plicker map

pair of intersecting pair of points

on a line of the quadric



Plicker map

pair of skew pair of points
li f P3[¥
nes o P of P5IF, quadric

not on a line of the quadric



Plicker map

spread of P3l¥, ovoid of P°IF; quadric

p2+1 mutually skew lines p2+1 mutually noncollinear points



spread in P°F
gives projective
plane of order p?...

Ovoids Ovoids S iacti
preads Projective
Eg lattice of P7If, of P°IF, in P°F, # planes
guadrics guadrics




Spread of
3-Space

spread of P9F,
F =T,

Translation plane
(affine or
projective plane)

p* points:
points of [F*

J
a spread at

infinity defines
the p?(p?+ 1)
‘lines’ each of

\ size p> )



Iquadrics

Ovoids Ovoids S jecti
_ preads Projective
Eg lattice # of P’F, of Pl in P°F,, planes
quadrics guadrics
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Iquadrics

Ovoids _
of P7IF, ... but first, a proof that P°>IF

quadrics quadrics have no spreads




Projective 3-space P3I¥

points

lines

planes



Projective 3-space P3I¥

points
planes




Projective 3-space P3I¥ P-IF' quadric

,’..l,
' type I planes AN
points ypelp AN
/M | A\
Pllicker
duality lines H points
planes type II planes




Projective 3-space P3I¥ P-IF' quadric

i type T planes Z
points ype I planes KRR
/M | A\
Pltcker _
duality lines H points reflection
planes type II planes




Projective 3-space P3I¥ P-IF' quadric
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planes type II planes

spread



Projective 3-space P3I¥ P-IF' quadric
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i type I planes ZHMA
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lines points

planes type II planes

p°+1 points (or Plucker

planes), no two €=————)  spread

collinear



Projective 3-space P3I¥ P-IF' quadric
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Projective 3-space P3I¥ P-IF' quadric
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P/IF quadric
type I solids
duality

(reflection)
points lines

type II solids



P/IF quadric
spread

type I solids

ovoid triality

points lines

type II solids

spread



No 9-dimensional ovoids are known!



No 9-dimensional ovoids are known!

Q Q

Y QO

N N
Ovoids. “ Ovoids "  Ovoids
of P, of P’IF,, of P,
quadrics quadrics guadrics

Is the apparent lack
of ovoids in P°I¥ due

to a lack of dense
lattices in R ?




Try to generalise this to ovoids over [

E /pE8 ~

Let A be the rm@ of algebraic integers
in @ number field of degree k over Q.

L =Eg® Ais a lattice over A; LipL = FpkB

Try to choose vectors in shells of L and
reduce mod p to get ovoids.



Lubotzky, Phillips and Sarnak (1988):
Explicit construction of Ramanujan graphs
(sparse but highly connected graphs) using
theta series of Z4*=A;0A;0A{®A;:

O@)=1+8(2 d)gm
d¢%|mn(])d4

For odd primes p, the coefficient of gP is 8(p+1)

(but this exact value is not required, only its rate
of growth).



