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Projective n-space over Z/mZ

Let R = Z/mZ.

Projective n-space over R is the incidence system PG(n, R)

formed by the free R-submodules of Rn+1 under inclusion.

Objects: submodules U 6 Rn+1 of rank k = 1, 2, . . . , n

(so U ∼= Rk )

k = 1: points

k = 2: lines

general k : ‘subspace’ of projective dimension k−1
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Projective n-space over Z/mZ
m = rs

Suppose gcd(r , s) = 1. The isomorphism

Z/rsZ ∼= Z/rZ ⊕ Z/sZ

induces

PG(n, Z/rsZ) ∼= PG(n, Z/rZ) × PG(n, Z/sZ)

GL(n+1, Z/rsZ) ∼= GL(n+1, Z/rZ) × GL(n+1, Z/sZ)

PGL(n+1, Z/rsZ) ∼= PGL(n+1, Z/rZ) × PGL(n+1, Z/sZ)
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Projective n-space over Z/qZ
q = pν , ν > 1

Reduction mod p gives a q
p
-to-one map

Z/qZ → Z/pZ

and a map

PG(n, Z/qZ) → PG(n, Z/pZ)

which is
(

q
p

)n
-to-one on points.

So PG(n, Z/qZ) has

(pn + pn−1 + · · ·+ p + 1)
(q

p

)n

points.
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Projective n-space over a local ring R

More generally, let R be a ring with unique maximal ideal

M ⊂ R and residue field F = R/M .

PG(n, R) is formed by the free R-submodules of Rn+1 of rank

k = 1, 2, . . . , n with inclusion relation.

The reduction mod M :

R → F

induces a map

PG(n, R) → PG(n, F )

which is |M |n-to-one on points.

Examples

• R = Z/pν
Z, M = pR, F = Fp

• R a Galois ring, F its residual Galois field

• R = Zp = {p-adic integers}, F = Fp
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Quadratic Forms over R

A quadratic form on V = Rn+1 is a homogeneous polynomial of

degree 2:

Q : Rn+1 → R

Q(x) =
∑

06i6j6n

aij xixj

Its associated bilinear form is

B(x , y) = Q(x + y)− Q(x) − Q(y) =
∑

06i6j6n

aij (xiyj + xjyi)

For a submodule U ⊆ Rn+1,

U⊥ = {x ∈ Rn+1 : B(x , u) = 0 for all u ∈ U}.

Assume B is nondegenerate, i.e. V⊥ = 0.
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Quadrics over R

Let U ⊂ Rn+1 be a free R-submodule of rank k .

U is totally singular if Q(u) = 0 for all u ∈ U.

(This implies that U ⊆ U⊥.)

(For k = 1, we speak simply of a singular point).

The quadric corresponding to Q is the set of singular points in

PG(n, R).
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Hyperbolic Quadrics over R

A quadratic form on R2k is hyperbolic (i.e. of type O+
2k

(R)) if it is

equivalent under GL(2k , R) to

x0x1 + x2x3 + · · ·+ x2k−2x2k−1 .

The O+
8 (Z/qZ) quadric (q = pν , ν > 1) has
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Ovoids in O+
8 (R)

An ovoid in O+
8 (R) is a set O of singular points, such that every

totally singular solid contains a unique point of O.

A set O consisting of singular points in O+
8 (Z/qZ), q = pν ,

ν > 1, no two of which are perpendicular, satisfies

|O| 6
(p3 + 1)(p2 + 1)(p + 1)

(q
p

)6

(p2 + 1)(p + 1)
(

q
p

)3
= (p3 + 1)

(

q
p

)3

and equality holds iff O is an ovoid.
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The E8 Root Lattice

Define the lattice E8 ⊂ R
8 by

E8 =
{

1
2

(

x1, x2, . . . , x8

)

: xi ∈ Z, x1≡x2≡ · · ·≡x8 mod 2,
∑

xi ≡ 0 mod 4
}

.

Every vector v ∈ E8 has norm ||v ||2 ∈ {0, 2, 4, 6, . . .}, and the

number of vectors of norm 2k > 2 is

240σ3(k), σ3(k) =
∑

16d | k

d3.

For each m > 2, E8/mE8
∼= R8 where R = Z/mZ.

The quadratic form Q : R8 → R defined by

Q(x) = 1
2
||x ||2 mod m

is of type O+
8 (R).
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Conway’s ovoids

A vector v ∈ E8 is primitive if for all k > 2 we have v /∈ kE8 .

Let R = Z/mZ, m > 2. Let e ∈ E8 of norm 2 (a root vector , e.g.

e = 1
2(1, 1, 1, 1, 1, 1, 1, 1)).

Theorem

Let m > 3 be odd. The set

Sm = {v ∈ e + 2E8 : v primitive of norm 2m}

gives an ovoid in E8/mE8
∼= O+

8
(Z/mZ).

Due to Conway et. al. (1988) in the case m is an odd prime.
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Conway’s ovoids generalized yet again

Example: Conway’s ovoid in O+
8 (Z/9Z)

Let m = 9. Ovoids in O+
8

(Z/9Z) have size (33 + 1)·33 = 756.

The set
S9 = {v ∈ e + 2E8 : v primitive of norm 18}

consists of

±1
2
(52,−32, 14) (420 such pairs)

±1
2
(−7,−32, 15) (168 such pairs)

±1
2
(5,−35, 12) (168 such pairs)

total 756 pairs

O consists of 756 singular points 〈(52, 62, 14)〉, 〈(2, 62, 15)〉,
〈(5, 65, 12)〉 in O+

8
(Z/9Z). Under the reduction mod 3

O+
8 (Z/9Z) → O+

8 (Z/3Z)

we obtain nothing like an ovoid (28 singular points in O+
8 (3),

mutually nonperpendicular).
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Conway’s ovoids generalized yet again

Example: Conway’s ovoid in O+
8 (Z/15Z)

Let m = 15. Ovoids in O+
8 (Z/15Z) have size

(33+1)(53+1) = 3528. The set

S15 = {v ∈ e + 2E8 : v primitive of norm 30}

consists of
± 1

2
(9,−34

,13) (280 such pairs)

± 1
2
(9,5,−3,15) (336 such pairs)

± 1
2
(−72

,−32
,14) (420 such pairs)

± 1
2
(−7,52

,−32
,13) (1680 such pairs)

± 1
2
(−7,5,−35

,1) (336 such pairs)

± 1
2
(54

,−32
,12) (420 such pairs)

± 1
2
(53

,−35) (56 such pairs)

total 3528 pairs
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Conway’s ovoids generalized yet again

Example: Conway’s ovoid in O+
8 (Z/15Z)

The isomorphism

Z/15Z ∼= Z/3Z ⊕ Z/5Z

induces

O+
8 (Z/15Z) ∼= O+

8 (Z/3Z) × O+
8 (Z/5Z)

Ovoids O3 in O+
8

(Z/3Z) and O5 in O+
8

(Z/5Z) give rise to an

ovoid

O3 ×O5 in O+
8

(Z/15Z).

But Conway’s ovoid does not arise in this way! (its projections

mod 3 and mod 5 do not give ovoids in O+
8 (3) or O+

8 (5)).
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Proof when m is an odd prime power q = pν

Let q = pν , p odd, and fix a root vector e = 1
2 (18) ∈ E8 .

Lemma

Let u, v ∈ e+2E8 of norm 2q. Then u·v ≡ 0 mod q iff v = ±u.

Proof.

If v = ±u then u · v = ±2q ≡ 0 mod q. Conversely, suppose

u · v ≡ 0 mod q. Then

||u − v ||2 = ||u||2 + ||v ||2 − 2u·v ≡ 0 mod q.

Also u − v ∈ 2E8 so ||u − v ||2 ≡ 0 mod 8q. But

||u − v ||2 6 (||u||+ ||v ||)2 = (
√

2q +
√

2q)2 = 8q

so ||u − v ||2 ∈ {0, 8q}. If ||u − v || = 0 then v = u. Otherwise

v ∈ 〈u〉 by Cauchy-Schwartz and v = −u.
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Conway’s ovoids generalized yet again

Proof when m is an odd prime power q = pν

Sq = {v ∈ e + 2E8 : v primitive of norm 2q}

gives a set of singular points O in O+
8 (Z/qZ). By the Lemma,

no two points of O are perpendicular. It remains to be shown

that |O| = (p3 + 1)
(

q
p

)3
= q3 +

(

q
p

)3
.
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Conway’s ovoids generalized yet again

Proof when m is an odd prime power q = pν

E8 has

240σ3(q) = 240(p3ν + p3(ν−1) + p3(ν−2) + · · ·+ p3 + 1)

vectors of norm 2q, partitioned into 120 cosets mod 2E8 . The

number of pairs {±v} of norm 2q in e + 2E8 is

σ3(p
ν) = p3ν + p3(ν−1) + p3(ν−2) + · · ·+ p3 + 1.

How many of these are imprimitive? They have the form pv

where v ∈ e + 2E8 has norm 2 q

p2 = 2pν−2 ; there are

σ3(p
ν−2) = p3(ν−2) + p3(ν−3) + · · ·+ p3 + 1

such pairs {±v}. Thus E8 has

σ3(p
ν) − σ3(p

ν−2) = p3ν + p3(ν−1) = q3 +
(

q
p

)3

antipodal pairs {±v} of primitive vectors of norm 2q as

required.
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Conway’s ovoids generalized yet again

In the previous construction, e + 2E8 can be replaced by

appropriate cosets of rE8.

r = 2, p odd prime: binary ovoids in O+
8 (Fp) (Conway, 1988)

r = 3, p 6= 3 prime: ternary ovoids in O+
8 (Fp) (Conway, 1988)

general primes r 6= p: r -ary ovoids in O+
8 (Fp) (M., 1993)

In these constructions, we don’t really need r and p to be

prime! We only require gcd(r , p) = 1.
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Galois rings

Consider a prime power q and ν ≥ 1. The Galois ring

R = GR(qν) of order qν has a unique maximal ideal M ⊂ R

and residue field R/M ∼= GF (pν) = Fpν .

An ovoid in O+
8 (R) consists of

(p3ν + 1)|M |3 = (p3ν + 1)
(

q
p

)3ν
= q3ν +

(

q
p

)3ν

mutually non-perpendicular singular points.

Examples?
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