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Projective Planes

A projective plane is a point-line incidence structure for which

• every pair of distinct points lies on a unique line;

• every pair of distinct lines meets in a unique point; and

• there exist four points with no three collinear.

Every point lies on N + 1 lines, and every line has N + 1 points,

where N is the order of the plane (finite or infinite).

There are N2 + N + 1 points and the same number of lines. In

the infinite case, this number is simply N .
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Dembowski-Hughes-Parker Theorem
a.k.a. Block’s Lemma

Theorem (c. 1950’s)

Let G be an automorphism group of a finite projective plane Π.

Then G has equally many point and line orbits.
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Dembowski-Hughes-Parker Theorem
a.k.a. Block’s Lemma

Proof (Brauer, 1941).

Let Π be a finite projective plane with incidence matrix A, and

let G be an automorphism group of Π. We have two

permutation representations πi : G 7→ GLN2+N+1(C) satisfying

π1(g)−1Aπ2(g) = A for all g ∈ G.

Here π1, π2 are the actions of G on points and lines

respectively. Now

π2(g) = A−1π1(g)A for all g ∈ G

so
[χ1, 1G] = [χ2, 1G]

where χi(g) = tr πi (g), i.e. the number of G-orbits on points

equals the number of G-orbits on lines.
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Dembowski-Hughes-Parker Theorem
a.k.a. Block’s Lemma

Theorem (c. 1950’s)

Let G be an automorphism group of a finite projective plane Π.

Then G has equally many point and line orbits.

Does this hold in the infinite case?

Cameron (1984) seems to have been the first to put this

question in print. Later (1991) he attributed the question to

Kantor.
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A Near -Example

Cameron mentions the following infinite design which comes

close to what is required: Start with a closed disk D. Consider

the 2-design

D :
Points of D

and

Lines=Chords of D

Aut D is transitive on lines (i.e. chords). It has two orbits on

points (boundary points and interior points).

But D is not a projective plane: two chords meet in 0 or 1

points.

Aut D ∼= PGL2(R)
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Theorem (M. and Penttila, 2012)

There exists a Desarguesian plane Π admitting a group

G < Aut Π having two orbits on points, and more than two

orbits on lines.

Given any two nonempty sets A and B, there exists a

projective plane Π admitting a group G 6 Aut Π having

exactly |A| orbits on points and |B| orbits on lines.

G. Eric Moorhouse Automorphism Groups of Projective Planes



Dembowski-Hughes-Parker Theorem

Desarguesian examples

Examples with arbitrarily many orbits

skewfields

2 orbits on points, more than 2 orbits on lines

Skewfields
Artin’s Problem

Consider an extension of skewfields L ⊇ K .

Artin (1946) asked whether it is possible for the left and right

degrees of L over K to differ.

Cohn (1961) gave examples with one degree infinite and the

other degree an arbitrary integer n > 2. Schofield (1985) gave

examples where the left and right degrees are arbitrary integers

m, n > 2.

For our construction, take left-degree > 2 and right-degree 2.
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Desarguesian planes

An arbitrary Desarguesian plane Π = PG(2, L) is coordinatized

by a (possibly commutative) skewfield L. Points and lines

correspond to left and right L-subspaces of L3 of dimension 1,

respectively:

Typical point: P = L
(

a, b, c) =
{(

λa, λb, λc
)

: λ ∈ L
}

6= {(0, 0, 0)}

Typical line: ` =





d

e

f



L =











dµ

eµ
fµ



 : µ ∈ L







6=





0

0

0





Incidence: P ∈ ` ⇔
(

a, b, c)





d

e

f



 = ad + be + cf = 0

Aut(Π) ∼= PGL3(L) = GL3(L)/Z where Z = {λI : 0 6= λ ∈ Z (L)}
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Desarguesian examples

Consider G = PGL3(K ) < PGL3(L) where L ⊇ K has

left-degree > 2 and right-degree 2.

Then G has 2 orbits on points of Π = PG2(L):

L(a, b, c) ∈







(

L(1, 0, 0)
)G

,
if a, b, c are right-linearly
dependent over K ;

(

L(1, α, 0)
)G

,
if a, b, c are right-linearly
independent over K

where {1, α} is a basis for L as a right vector space over K .

And more than 2 orbits on lines.
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The Group G

Consider a multiplicative group G satisfying

(G1) G is infinite nonabelian;

(G2) Every conjugacy class in G other than {1} has cardinality

|G|; and

(G3) Every element of G has at most one square root in G.

For every infinite cardinal number C, there is such a group of

cardinality C (e.g. a free group on C generators; in the

countable case, 2 generators suffice).
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Plane Construction

Theorem

Let A and B be nonempty sets with |A|, |B| 6 |G| where G

satisfies (G1), (G2), (G3) above. Then there exists a projective

plane Π of order |G| with a group of collineations isomorphic

to G, having exactly |A| point orbits and |B| line orbits.

Proof We require an indexed collection of subsets Da,b ⊂ G

for (a, b) ∈ A × B satisfying certain conditions (see (D1), (D2)

below).

Points: (x , a) ∈ G × A

Lines: (y , b) ∈ G × B

Incidence: (x , a) lies on (y , b) ⇔ xy−1 ∈ Da,b

G. Eric Moorhouse Automorphism Groups of Projective Planes
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Plane Construction

The properties required of the subsets Da,b ⊂ G are:

(D1) For all b1, b2 ∈ B and g ∈ G, there exists a ∈ A and

elements di ∈ Da,bi
such that g = d−1

1 d2. The triple

(a, d1, d2) is unique whenever (b1, g) 6= (b2, 1).

(D2) For all a1, a2 ∈ A and g ∈ G, there exists b ∈ B and

elements di ∈ Dai ,b such that g = d1d−1
2 . The triple

(b, d1, d2) is unique whenever (a1, g) 6= (a2, 1).

We construct the required subsets Da,b ⊂ G by transfinite

recursion. When |A| = |B| = 1 just one subset D ⊂ G is

required, a difference set (Hughes, 1955).
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I don’t always work on infinite stuff. . .

But when I do, I consider arbitrary cardinalities.
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Recursion on STEPS = (A × A × G) ∪ (B × B × G)

Let

STEPS = (A × A × G) ∪ (B × B × G)

(here we assume A ∩ B = ∅). Well-order the set of steps as

STEPS = {STEP(α) : α < C}

where C = |STEPS| = |G|. Recursively construct

Da,b =
⋃

α<C

Da,b(α).

Initially (i.e. at STEP(0)) all sets Da,b(0) = ∅.

For every limit ordinal α < C, set Da,b(α) =
⋃

β<α Da,b(β).
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Recursion on STEPS = (A × A × G) ∪ (B × B × G)

Now suppose α = β + 1 < C. Form Da,b(β + 1) ⊇ Da,b(β) by

adjoining at most two elements of G, as follows. Consider only

case STEP(α) = (b1, b2, g) (the other case

STEP(α) = (a1, a2, g) is similar). Three subcases:

1 Suppose g = d−1
1

d2, di ∈ Da,bi
(β), a ∈ A. Then add

nothing: Da,b(α) = Da,b(β) for all a, b.

2 If 1 fails, first choose a1 ∈ A arbitrarily. Form

Da,b(α) ⊇ Da,b(β) by adding one or two new elements for

(a, b) ∈ {(a1, b1), (a1, b2)} and no new elements for other

(a, b), such that g = d−1
1

d2, di ∈ Da1,bi
(α). There are

|G| = C elements to choose from, and fewer than this

many choices are excluded by (D1)–(D2).
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d2, di ∈ Da1,bi
(α). There are

|G| = C elements to choose from, and fewer than this

many choices are excluded by (D1)–(D2).
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Thank You!

Questions?
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