Octonionic Ovoids

G. Eric Moorhouse

Department of Mathematics University of Wyoming

Third Mile High Conference on Nonassociative Mathematics 15 August 2013

ă

(ロ) (伊)

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $\textit{x} = (x_1, \ldots, x_6) \in \mathbb{Z}^6$ such that

$$
x_i \equiv 1 \mod 4; \text{ and}
$$

$$
2\sum_i x_i^2=6p.
$$

Then $|\mathcal{S}| = p^2 + 1$; and for all $x \neq y$ in $\mathcal{S},\ x \cdot y \not\equiv 0$ mod p .

S contains 6 vectors of shape $(5, 1, 1, 1, 1, 1)$; 20 vectors of shape (−3, −3, −3, 1, 1, 1).

S contains 20 vectors of shape $(5, 5, 5, 1, 1, 1)$; 30 vectors of shape (−7, −5, 1, 1, 1, 1); 60 vectors of shape (5, 5, −3, −3, −3, 1); 60 vectors of shape (−7, −3, −3, −3, 1, 1).

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $\textit{x} = (x_1, \ldots, x_6) \in \mathbb{Z}^6$ such that

$$
x_i \equiv 1 \mod 4; \text{ and}
$$

$$
2\sum_i x_i^2=6p.
$$

Then $|\mathcal{S}| = p^2 + 1$; and for all $x \neq y$ in $\mathcal{S},\ x \cdot y \not\equiv 0$ mod p .

S contains 6 vectors of shape $(5, 1, 1, 1, 1, 1)$; 20 vectors of shape (−3, −3, −3, 1, 1, 1).

S contains 20 vectors of shape $(5, 5, 5, 1, 1, 1)$; 30 vectors of shape (−7, −5, 1, 1, 1, 1); 60 vectors of shape (5, 5, −3, −3, −3, 1); 60 vectors of shape (−7, −3, −3, −3, 1, 1).

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $\textit{x} = (x_1, \ldots, x_6) \in \mathbb{Z}^6$ such that

$$
x_i \equiv 1 \mod 4; \text{ and}
$$

$$
2\sum_i x_i^2=6p.
$$

Then $|\mathcal{S}| = p^2 + 1$; and for all $x \neq y$ in $\mathcal{S},\ x \cdot y \not\equiv 0$ mod p .

Example ($p = 5, |S| = 5^2 + 1 = 26$)

S contains 6 vectors of shape $(5, 1, 1, 1, 1, 1)$; 20 vectors of shape (-3, -3, -3, 1, 1, 1).

S contains 20 vectors of shape $(5, 5, 5, 1, 1, 1)$; 30 vectors of shape (−7, −5, 1, 1, 1, 1); 60 vectors of shape (5, 5, −3, −3, −3, 1); 60 vectors of shape (−7, −3, −3, −3, 1, 1).

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $\textit{x} = (x_1, \ldots, x_6) \in \mathbb{Z}^6$ such that

$$
x_i \equiv 1 \mod 4; \text{ and}
$$

$$
2\sum_i x_i^2=6p.
$$

Then $|\mathcal{S}| = p^2 + 1$; and for all $x \neq y$ in $\mathcal{S},\ x \cdot y \not\equiv 0$ mod p .

Example ($p = 5, |S| = 5^2 + 1 = 26$)

S contains 6 vectors of shape $(5, 1, 1, 1, 1, 1)$; 20 vectors of shape (-3, -3, -3, 1, 1, 1).

Example ($p = 13$, $|S| = 13^2 + 1 = 170$)

S contains 20 vectors of shape $(5, 5, 5, 1, 1, 1)$; 30 vectors of shape (-7, -5, 1, 1, 1, 1); 60 vectors of shape (5, 5, −3, −3, −3, 1); 60 vectors of shape $(-7, -3, -3, -3, 1, 1)$.

Let *V* be a 2*n*-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q: V \to \mathbb{F}_q$.

(Projective) points are 1-dimensional subspaces $\langle v \rangle$ < *V*; such a point is *singular* if $Q(v) = 0$. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension *n*, if *Q* is chosen appropriately.

An *ovoid* is a set O of points of the quadric, meeting each generator exactly once. Equivalently, ∅ is a set of $q^{n-1}+1$ singular points, no two perpendicular.

The O_4^+ $\frac{q^{+}}{4}(q)$ quadric is a $(q+1)\times(q+1)$ grid; ovoids are transversals of the grid. Ovoids in the *O* + 6 (*q*) quadric exist for all *q*. The lattice construction of ovoids in O_6^+ 6 (*p*) (above) can be generalized to all primes *p*. **K ロ ト K 何 ト K ヨ ト K**

Let *V* be a 2*n*-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q: V \to \mathbb{F}_q$.

(Projective) points are 1-dimensional subspaces $\langle v \rangle \langle v \rangle$; such **a point is** *singular* if $Q(v) = 0$. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension *n*, if *Q* is chosen appropriately.

An *ovoid* is a set O of points of the quadric, meeting each generator exactly once. Equivalently, ∅ is a set of $q^{n-1}+1$ singular points, no two perpendicular.

The O_4^+ $\frac{q^{+}}{4}(q)$ quadric is a $(q+1)\times(q+1)$ grid; ovoids are transversals of the grid. Ovoids in the *O* + 6 (*q*) quadric exist for all *q*. The lattice construction of ovoids in O_6^+ 6 (*p*) (above) can be generalized to all primes *p*. **K ロ ト K 何 ト K ヨ ト K**

Let *V* be a 2*n*-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q: V \to \mathbb{F}_q$.

(Projective) points are 1-dimensional subspaces $\langle v \rangle \langle v \rangle$; such a point is *singular* if $Q(v) = 0$. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension *n*, if *Q* is chosen appropriately.

An *ovoid* is a set O of points of the quadric, meeting each generator exactly once. Equivalently, ∅ is a set of $q^{n-1}+1$ singular points, no two perpendicular.

The O_4^+ $\frac{q^{+}}{4}(q)$ quadric is a $(q+1)\times(q+1)$ grid; ovoids are transversals of the grid. Ovoids in the *O* + 6 (*q*) quadric exist for all *q*. The lattice construction of ovoids in O_6^+ 6 (*p*) (above) can be generalized to all primes *p*. 4 ロ } 4 6 } 4 3 } 4

Let *V* be a 2*n*-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q: V \to \mathbb{F}_q$.

(Projective) points are 1-dimensional subspaces $\langle v \rangle \langle v \rangle$; such a point is *singular* if $Q(v) = 0$. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension *n*, if *Q* is chosen appropriately.

An *ovoid* is a set O of points of the quadric, meeting each generator exactly once. Equivalently, ∅ is a set of $q^{n-1}+1$ singular points, no two perpendicular.

The O_4^+ $\frac{q^{+}}{4}(q)$ quadric is a $(q+1)\times(q+1)$ grid; ovoids are transversals of the grid. Ovoids in the *O* + 6 (*q*) quadric exist for all *q*. The lattice construction of ovoids in O_6^+ 6 (*p*) (above) can be generalized to all primes *p*. 4 ロ } 4 6 } 4 3 } 4

Let *V* be a 2*n*-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q: V \to \mathbb{F}_q$.

(Projective) points are 1-dimensional subspaces $\langle v \rangle \langle v \rangle$; such a point is *singular* if $Q(v) = 0$. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension *n*, if *Q* is chosen appropriately.

An *ovoid* is a set O of points of the quadric, meeting each generator exactly once. Equivalently, ∅ is a set of $q^{n-1}+1$ singular points, no two perpendicular.

The O_4^+ $\frac{q^{+}}{4}(q)$ quadric is a $(q+1)\times(q+1)$ grid; ovoids are transversals of the grid. Ovoids in the *O* + 6 (*q*) quadric exist for all *q*. The lattice construction of ovoids in O_6^+ 6 (*p*) (above) can be generalized to all primes *p*. **K ロ ト K 何 ト K ヨ ト K**

Let *V* be a 2*n*-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q: V \to \mathbb{F}_q$.

(Projective) points are 1-dimensional subspaces $\langle v \rangle \langle v \rangle$; such a point is *singular* if $Q(v) = 0$. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension *n*, if *Q* is chosen appropriately.

An $ovoid$ is a set O of points of the quadric, meeting each generator exactly once. Equivalently, $\mathcal O$ is a set of $\bm{{q}}^{n-1}+1$ singular points, no two perpendicular.

The O_4^+ $\frac{q^{+}}{4}(q)$ quadric is a $(q+1)\times(q+1)$ grid; ovoids are transversals of the grid. Ovoids in the *O* + 6 (*q*) quadric exist for all *q*. The lattice construction of ovoids in O_6^+ 6 (*p*) (above) can be generalized to all primes *p*. **≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト**

Let *V* be a 2*n*-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q: V \to \mathbb{F}_q$.

(Projective) points are 1-dimensional subspaces $\langle v \rangle \langle v \rangle$; such a point is *singular* if $Q(v) = 0$. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension *n*, if *Q* is chosen appropriately.

An $ovoid$ is a set O of points of the quadric, meeting each generator exactly once. Equivalently, $\mathcal O$ is a set of $\bm{{q}}^{n-1}+1$ singular points, no two perpendicular.

The O_4^+ $q_{4}^{+}(q)$ quadric is a $(q+1)\times(q+1)$ grid; ovoids are transversals of the grid. Ovoids in the *O* + 6 (*q*) quadric exist for all *q*. The lattice construction of ovoids in O_6^+ 6 (*p*) (above) can be generalized to all primes *p*. **≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト**

Let *V* be a 2*n*-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q: V \to \mathbb{F}_q$.

(Projective) points are 1-dimensional subspaces $\langle v \rangle \langle v \rangle$; such a point is *singular* if $Q(v) = 0$. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension *n*, if *Q* is chosen appropriately.

An *ovoid* is a set $\mathcal O$ of points of the quadric, meeting each generator exactly once. Equivalently, $\mathcal O$ is a set of $\bm{{q}}^{n-1}+1$ singular points, no two perpendicular.

The O_4^+ $q^+(q)$ quadric is a $(q+1)\times (q+1)$ grid; ovoids are transversals of the grid. Ovoids in the O_6^+ $\theta_6^+(q)$ quadric exist for all *q*. The lattice construction of ovoids in O_6^+ 6 (*p*) (above) can be generalized to all primes *p*. **K ロ ト K 伊 ト K ヨ ト**

Let *V* be a 2*n*-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q: V \to \mathbb{F}_q$.

(Projective) points are 1-dimensional subspaces $\langle v \rangle$ < *V*; such a point is *singular* if $Q(v) = 0$. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension *n*, if *Q* is chosen appropriately.

An *ovoid* is a set $\mathcal O$ of points of the quadric, meeting each generator exactly once. Equivalently, $\mathcal O$ is a set of $\bm{{q}}^{n-1}+1$ singular points, no two perpendicular.

Ovoids in *O* + $\mathbf{g}_{8}^{+}(q)$ are known for *some* values of q , including all *q* = *p* prime (Conway et al., 1988). No ovoids in *O* + $_{2n}^{+}(q)$ are known in dimension $2n \geq 10$.

K ロメ K 御 メ K 君 メ K 君 X

Let *V* be a 2*n*-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q: V \to \mathbb{F}_q$.

(Projective) points are 1-dimensional subspaces $\langle v \rangle$ < *V*; such a point is *singular* if $Q(v) = 0$. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension *n*, if *Q* is chosen appropriately.

An *ovoid* is a set $\mathcal O$ of points of the quadric, meeting each generator exactly once. Equivalently, $\mathcal O$ is a set of $\bm{{q}}^{n-1}+1$ singular points, no two perpendicular.

Ovoids in *O* + $\mathbf{g}_{8}^{+}(q)$ are known for *some* values of q , including all $q = p$ prime (Conway et al., 1988). No ovoids in O_{2q}^+ $g_{2n}^+(q)$ are known in dimension $2n \geq 10$.

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

The Ring *O* of Integral Octaves

Denote by *O* the *ring of integral octaves*. The octonion algebra is $\mathbb{O} = \mathbb{R} \otimes_{\mathbb{Z}} O$ and O is isometric to a root lattice of type E_8 in O.

The set of units \mathbb{O}^{\times} is a Moufang loop of order 240, consisting of all elements of norm 1 in *O*.

For all $n \ge 1$, the number of elements $v \in O$ of *norm* $|v|^2 = n$ is $240\sigma_3(n) = 240$ $\sum d^3$. 16*d*|*n*

Reduction mod *p* gives maps $\mathbb{Z} \to \mathbb{F}_p$ and $O \to V := O/pO$ denoted by $\overline{}$. Equipped with the quadratic form

 $Q: V \to \mathbb{F}_p$, $Q(\overline{X}) = |\overline{X|^2}$,

V is an orthogonal space of type O_8^+ 8 (*p*).

K ロ ▶ K 伊 ▶ K ヨ ▶

Denote by *O* the *ring of integral octaves*. The octonion algebra is $\mathbb{O} = \mathbb{R} \otimes_{\mathbb{Z}} O$ and O is isometric to a root lattice of type E_8 in O.

The set of units \mathbb{O}^{\times} is a Moufang loop of order 240, consisting of all elements of norm 1 in *O*.

For all $n \ge 1$, the number of elements $v \in O$ of *norm* $|v|^2 = n$ is $240\sigma_3(n) = 240$ $\sum d^3$. 16*d*|*n*

Reduction mod *p* gives maps $\mathbb{Z} \to \mathbb{F}_p$ and $O \to V := O/pO$ denoted by $\overline{}$. Equipped with the quadratic form

 $Q: V \to \mathbb{F}_p$, $Q(\overline{X}) = |\overline{X|^2}$,

V is an orthogonal space of type O_8^+ 8 (*p*).

K ロ ト K 何 ト K ヨ ト K ヨ

Denote by *O* the *ring of integral octaves*. The octonion algebra is $\mathbb{O} = \mathbb{R} \otimes_{\mathbb{Z}} O$ and *O* is isometric to a root lattice of type E_8 in O.

The set of units \mathbb{O}^{\times} is a Moufang loop of order 240, consisting of all elements of norm 1 in *O*.

For all $n \ge 1$, the number of elements $v \in O$ of *norm* $|v|^2 = n$ is 240 $\sigma_3(n)=$ 240 $\sum d^3$. 16*d*|*n*

Reduction mod *p* gives maps $\mathbb{Z} \to \mathbb{F}_p$ and $O \to V := O/pO$ denoted by $\overline{}$. Equipped with the quadratic form

 $Q: V \to \mathbb{F}_p$, $Q(\overline{X}) = |\overline{X|^2}$,

V is an orthogonal space of type O_8^+ 8 (*p*).

Denote by *O* the *ring of integral octaves*. The octonion algebra is $\mathbb{O} = \mathbb{R} \otimes_{\mathbb{Z}} O$ and *O* is isometric to a root lattice of type E_8 in O.

The set of units \mathbb{O}^{\times} is a Moufang loop of order 240, consisting of all elements of norm 1 in *O*.

For all $n \ge 1$, the number of elements $v \in O$ of *norm* $|v|^2 = n$ is 240 $\sigma_3(n)=$ 240 $\sum d^3$. 16*d*|*n*

Reduction mod *p* gives maps $\mathbb{Z} \to \mathbb{F}_p$ and $O \to V := O/pO$ denoted by $\overline{}$. Equipped with the quadratic form

 $Q: V \to \mathbb{F}_p$, $Q(\overline{X}) = |\overline{X|^2}$,

V is an orthogonal space of type O_8^+ 8 (*p*).

4 ロ) (何) (日) (日)

E

Theorem (Conway, Kleidman & Wilson, 1988)

Let p be an odd prime. Fix a unit $u \in O^{\times}$ *. Let S be the set of vectors* $x \in \mathbb{Z}$ *u* + 2*O* \subset *O* such that $|x|^2 = p$. Then $|{\cal S}| = 2(p^3{+}1)$ and ${\cal S}$ consists of p^3+1 pairs $\pm x$. Reducing *these vectors mod pO gives*

$$
\mathcal{O} = \mathcal{O}_{2,p,u} = \{ \langle \overline{x} \rangle : \pm x \in \mathcal{S} \},
$$

an ovoid in O/pO \simeq O_8^+ 8 (*p*)*.*

The proof uses the most basic facts about the E_8 root lattice. Conway et al. also gave a construction of 'ternary' ovoids (replacing the prime 2 by 3 above).

← ロ → → r 何 → →

Theorem (Conway, Kleidman & Wilson, 1988)

Let p be an odd prime. Fix a unit $u \in O^{\times}$ *. Let S be the set of vectors* $x \in \mathbb{Z}$ *u* + 2*O* \subset *O* such that $|x|^2 = p$. Then $|{\cal S}| = 2(p^3{+}1)$ and ${\cal S}$ consists of p^3+1 pairs $\pm x$. Reducing *these vectors mod pO gives*

$$
\mathcal{O}=\mathcal{O}_{2,p,u}=\big\{\langle\overline{x}\rangle\,:\,\pm x\in\mathcal{S}\big\},
$$

an ovoid in O/pO \simeq O_8^+ 8 (*p*)*.*

The proof uses the most basic facts about the E_8 root lattice. Conway et al. also gave a construction of 'ternary' ovoids (replacing the prime 2 by 3 above).

← ロ → → イ 同 → →

Theorem (Conway, Kleidman & Wilson, 1988)

Let p be an odd prime. Fix a unit $u \in O^{\times}$ *. Let S be the set of vectors* $x \in \mathbb{Z}$ *u* + 2*O* \subset *O* such that $|x|^2 = p$. Then $|{\cal S}| = 2(p^3{+}1)$ and ${\cal S}$ consists of p^3+1 pairs $\pm x$. Reducing *these vectors mod pO gives*

$$
\mathcal{O}=\mathcal{O}_{2,p,u}=\big\{\langle\overline{x}\rangle\,:\,\pm x\in\mathcal{S}\big\},
$$

an ovoid in O/pO \simeq O_8^+ 8 (*p*)*.*

The proof uses the most basic facts about the E_8 root lattice. Conway et al. also gave a construction of 'ternary' ovoids (replacing the prime 2 by 3 above).

← ロ → → r 何 → →

The *r*-ary ovoids in O_8^+ $S_{8}^{+}(p)$

Theorem (M., 1993)

Let $r \neq p$ be odd primes. Fix $u \in O$ such that $\int_{a}^{-p|u|^2}$ *r* $= +1.$

Let S *be the set of vectors* $x \in \mathbb{Z}$ *u* + $rO \subset O$ such that $|x|^2 = k(r - k)p$ for some $k \in \{1, 2, ..., \frac{r-1}{2}\}$ 2 }*. Then* $|{\cal S}| = 2(p^3{+}1)$ and ${\cal S}$ consists of $p^3{+}1$ pairs $\pm x$. Reducing *these vectors mod pO gives*

$$
\mathcal{O}=\mathcal{O}_{r,p,u}=\big\{\langle\overline{x}\rangle\,:\,\pm x\in\mathcal{S}\big\},\,
$$

an ovoid in O/pO \simeq O_{8}^{+} 8 (*p*)*. (Some degenerate cases occur for* $r > p.$

The proof uses facts about E_8 *and* the fact that $E_8 \oplus E_8$ has 480σ ₇(*n*) elements of norm $n \ge 1$. (*Or O* and theorems on factorization in *O*). Ovoids isomorphic to $O_{r,p,u}$ (for primes $r \neq p$, including $r = 2$) are the *r-ary ovoids of octonionic type* in O_{8}^{+} 8 (*p*). **≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト**

Let $r \neq p$ be odd primes. Fix $u \in O$ such that $\int_{a}^{-p|u|^2}$ *r* $= +1.$ *Let* S be the set of vectors $x \in \mathbb{Z}$ *u* + $rO \subset O$ such that $|x|^2 = k(r - k)p$ for some $k \in \{1, 2, ..., \frac{r-1}{2}\}$. Then $|S| = 2(p^3+1)$ and *S* consists of p^3+1 pairs $\pm x$. Reducing *these vectors mod pO gives* $\mathcal{O} = \mathcal{O}_{r,p,u} = \big\{ \langle \overline{x} \rangle \, : \, \pm x \in \mathcal{S} \big\},$ *an ovoid in O/pO* \simeq O_{8}^{+} 8 (*p*)*. (Some degenerate cases occur for* $r > p.$

The proof uses facts about E_8 *and* the fact that $E_8 \oplus E_8$ has 480σ ₇(*n*) elements of norm $n \ge 1$. (*Or O* and theorems on factorization in *O*). Ovoids isomorphic to $O_{r,p,u}$ (for primes $r \neq p$, including $r = 2$) are the *r-ary ovoids of octonionic type* in O_{8}^{+} 8 (*p*). **≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト**

Let $r \neq p$ be odd primes. Fix $u \in O$ such that $\int_{a}^{-p|u|^2}$ *r* $= +1.$ *Let* S be the set of vectors $x \in \mathbb{Z}$ *u* + $rO \subset O$ such that $|x|^2 = k(r - k)p$ for some $k \in \{1, 2, ..., \frac{r-1}{2}\}$. Then $|S| = 2(p^3+1)$ and S consists of p^3+1 pairs $\pm x$. Reducing *these vectors mod pO gives*

$$
\mathcal{O}=\mathcal{O}_{r,p,u}=\big\{\langle\overline{x}\rangle\,:\,\pm x\in\mathcal{S}\big\},
$$

an ovoid in O/ $pO \simeq O_{8}^{+}$ 8 (*p*)*. (Some degenerate cases occur for* $r > p$.)

The proof uses facts about E_8 *and* the fact that $E_8 \oplus E_8$ has 480σ ₇(*n*) elements of norm $n \ge 1$. (*Or O* and theorems on factorization in *O*). Ovoids isomorphic to $O_{r,p,u}$ (for primes $r \neq p$, including $r = 2$) are the *r-ary ovoids of octonionic type* in O_{8}^{+} 8 (*p*). 4 ロ) (何) (日) (日)

Let $r \neq p$ be odd primes. Fix $u \in O$ such that $\int_{a}^{-p|u|^2}$ *r* $= +1.$ *Let* S be the set of vectors $x \in \mathbb{Z}$ *u* + $rO \subset O$ such that $|x|^2 = k(r - k)p$ for some $k \in \{1, 2, ..., \frac{r-1}{2}\}$. Then $|S| = 2(p^3+1)$ and S consists of p^3+1 pairs $\pm x$. Reducing *these vectors mod pO gives*

$$
\mathcal{O}=\mathcal{O}_{r,p,u}=\big\{\langle\overline{x}\rangle\,:\,\pm x\in\mathcal{S}\big\},\,
$$

an ovoid in O/ $pO \simeq O_{8}^{+}$ 8 (*p*)*. (Some degenerate cases occur for* $r > p$.)

The proof uses facts about E_8 *and* the fact that $E_8 \oplus E_8$ has 480σ ₇(*n*) elements of norm $n \ge 1$. (*Or O* and theorems on **factorization in** *O***).** Ovoids isomorphic to $\mathcal{O}_{r,p,\mu}$ (for primes $r \neq p$, including $r = 2$) are the *r-ary ovoids of octonionic type* in $O_{8}^{+}(p)$. 4 ロ) (何) (日) (日) 8

Let $r \neq p$ be odd primes. Fix $u \in O$ such that $\int_{a}^{-p|u|^2}$ *r* $= +1.$ *Let* S be the set of vectors $x \in \mathbb{Z}$ *u* + $rO \subset O$ such that $|x|^2 = k(r - k)p$ for some $k \in \{1, 2, ..., \frac{r-1}{2}\}$. Then $|S| = 2(p^3+1)$ and S consists of p^3+1 pairs $\pm x$. Reducing *these vectors mod pO gives*

$$
\mathcal{O}=\mathcal{O}_{r,p,u}=\big\{\langle\overline{x}\rangle\,:\,\pm x\in\mathcal{S}\big\},\,
$$

an ovoid in O/ $pO \simeq O_{8}^{+}$ 8 (*p*)*. (Some degenerate cases occur for* $r > p$.)

The proof uses facts about E_8 *and* the fact that $E_8 \oplus E_8$ has 480σ ₇(*n*) elements of norm $n \ge 1$. (*Or O* and theorems on factorization in *O*). Ovoids isomorphic to $\mathcal{O}_{r,p,u}$ (for primes $r \neq p$, including $r = 2$) are the *r-ary ovoids of octonionic type* in *O* + 8 (*p*).

- ¹ For each *p*, there are infinitely many choices of *r*, *u* to choose in constructing $O_{r,p,u}$ but only finitely many ovoids in O_8^+ 8 (*p*). How many? How do we know when we have found them all?
- ² Let *w*(*p*) be the number of isomorphism classes of *octonionic ovoids* in *O* + 8 (*p*). Does *w*(*p*) → ∞ as *p* → ∞? (By Conway et al. (1988), $w(p) \geq 1$.)
- ³ *r*, *p* don't really have to be primes. Does anything comparable work in *O* + 8 (*q*)?
- ⁴ Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(\rho)$; but no rigid ovoids in O_8^+ $n_8^+(q)$ have been found.
- ⁵ What is *really going on* in the construction of octonionic ovoids?

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

- ¹ For each *p*, there are infinitely many choices of *r*, *u* to choose in constructing $O_{r,p,u}$ but only finitely many ovoids in O_8^+ 8 (*p*). How many? How do we know when we have found them all?
- ² Let *w*(*p*) be the number of isomorphism classes of *octonionic ovoids* in *O* + $\mathsf{g}^+(\rho)$. Does $\mathsf{w}(\rho) \to \infty$ as $\rho \to \infty$? (By Conway et al. (1988), $w(p) \geq 1$.)
- ³ *r*, *p* don't really have to be primes. Does anything comparable work in *O* + 8 (*q*)?
- ⁴ Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(\rho)$; but no rigid ovoids in O_8^+ $n_8^+(q)$ have been found.
- ⁵ What is *really going on* in the construction of octonionic ovoids?

- ¹ For each *p*, there are infinitely many choices of *r*, *u* to choose in constructing $O_{r,p,u}$ but only finitely many ovoids in O_8^+ 8 (*p*). How many? How do we know when we have found them all?
- ² Let *w*(*p*) be the number of isomorphism classes of *octonionic ovoids* in *O* + $\mathsf{g}^+(\rho)$. Does $\mathsf{w}(\rho) \to \infty$ as $\rho \to \infty$? (By Conway et al. (1988), $w(p) \geq 1$.)
- ³ *r*, *p* don't really have to be primes. Does anything comparable work in *O* + 8 (*q*)?
- **4** Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(\rho)$; but no rigid ovoids in O_8^+ $n_8^+(q)$ have been found.
- ⁵ What is *really going on* in the construction of octonionic ovoids?

G

- ¹ For each *p*, there are infinitely many choices of *r*, *u* to choose in constructing $O_{r,p,u}$ but only finitely many ovoids in O_8^+ 8 (*p*). How many? How do we know when we have found them all?
- ² Let *w*(*p*) be the number of isomorphism classes of *octonionic ovoids* in *O* + $\mathsf{g}^+(\rho)$. Does $\mathsf{w}(\rho) \to \infty$ as $\rho \to \infty$? (By Conway et al. (1988), $w(p) \geq 1$.)
- ³ *r*, *p* don't really have to be primes. Does anything comparable work in *O* + 8 (*q*)?
- **4** Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(\rho)$; but no rigid ovoids in O_8^+ $n_8^+(q)$ have been found.
- ⁵ What is *really going on* in the construction of octonionic ovoids?

G

- ¹ For each *p*, there are infinitely many choices of *r*, *u* to choose in constructing $O_{r,p,u}$ but only finitely many ovoids in O_8^+ 8 (*p*). How many? How do we know when we have found them all?
- ² Let *w*(*p*) be the number of isomorphism classes of *octonionic ovoids* in *O* + $\mathsf{g}^+(\rho)$. Does $\mathsf{w}(\rho) \to \infty$ as $\rho \to \infty$? (By Conway et al. (1988), $w(p) \ge 1$.)
- ³ *r*, *p* don't really have to be primes. Does anything comparable work in *O* + 8 (*q*)?
- ⁴ Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(\rho)$; but no rigid ovoids in O_8^+ $g_8^+(q)$ have been found.
- ⁵ What is *really going on* in the construction of octonionic ovoids?

G

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

- ¹ For each *p*, there are infinitely many choices of *r*, *u* to choose in constructing $O_{r,p,u}$ but only finitely many ovoids in O_8^+ 8 (*p*). How many? How do we know when we have found them all?
- ² Let *w*(*p*) be the number of isomorphism classes of *octonionic ovoids* in *O* + $\mathsf{g}^+(\rho)$. Does $\mathsf{w}(\rho) \to \infty$ as $\rho \to \infty$? (By Conway et al. (1988), $w(p) \geq 1$.)
- ³ *r*, *p* don't really have to be primes. Does anything comparable work in *O* + 8 (*q*)?
- ⁴ Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(\rho)$; but no rigid ovoids in O_8^+ $g_8^+(q)$ have been found.
- ⁵ What is *really going on* in the construction of octonionic ovoids?

G

≮ロト ⊀ 何 ト ⊀ ヨ ト ⊀ ヨ ト

Let $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_w$ be representatives for the isomorphism types of octonionic ovoids in *O* + 8 (*p*), under *G* = *PGO*⁺ 8 (*p*). The number of ovoids isomorphic to \mathcal{O}_i is $[G:G_{\mathcal{O}_i}];$ note that

$$
|G| = |PGO8+(p)| = \frac{2}{d}p12(p6 - 1)(p4 - 1)2(p2 - 1)
$$

where $d = \gcd(p-1, 2)$.

The subgroup $W(E_8)/\{\pm I\} \cong {\textit{PGO}}_8^+(2) \leqslant G$ has order

 $|PGO_8^+(2)| = 348,364,800.$

K ロ ⊁ K 伊 ⊁ K ヨ ⊁ K ヨ

Let $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_w$ be representatives for the isomorphism types of octonionic ovoids in *O* + 8 (*p*), under *G* = *PGO*⁺ 8 (*p*). The number of ovoids isomorphic to \mathcal{O}_i is $[G:G_{\mathcal{O}_i}];$ note that

$$
|G| = |PGO8+(p)| = \frac{2}{d}p12(p6 - 1)(p4 - 1)2(p2 - 1)
$$

where $d = \gcd(p-1, 2)$.

 $\mathsf{The} \ \mathsf{subgroup} \ W(E_8) / \{\pm I\} \cong \mathit{PGO}^+_8(2) \leqslant G \ \mathsf{has} \ \mathsf{order}$

$$
|PGO_8^+(2)|=348,364,800.
$$

K ロ ⊁ K 伊 ⊁ K ヨ ⊁ K

The stabilizers $G_{\mathcal{O}_i}$ are not necessarily subgroups of $PGO^+_8(2).$ I am not claiming that the terms in this sum are always integers (but in every known case they are).

The cases $p = 2, 3$ are genuine exceptions. (When $p = 3$ the octonionic ovoids lie in hyperplanes.)

 4 ロ } 4 6 } 4 3 } 4

The stabilizers $G_{\mathcal{O}_i}$ are not necessarily subgroups of $PGO_8^+(2)$. I am not claiming that the terms in this sum are always integers (but in every known case they are).

The cases $p = 2, 3$ are genuine exceptions. (When $p = 3$ the octonionic ovoids lie in hyperplanes.)

K ロ ト K 何 ト K ヨ ト K ヨ

The stabilizers $G_{\mathcal{O}_i}$ are not necessarily subgroups of $PGO_8^+(2)$. I am not claiming that the terms in this sum are always integers (but in every known case they are).

The cases $p = 2, 3$ are genuine exceptions. (When $p = 3$ the octonionic ovoids lie in hyperplanes.)

 4 ロ } 4 6 } 4 3 } 4

Corollary

Let n(*p*) *be the number of isomorphism types of ovoids in O* + (*p*)*. If the Mass Formula holds, then for some absolute* $C_8(P)$. If the mass Formula holds, then for second
constant $C > 0$, $n(p) \geqslant Cp^4 \to \infty$ as $p \to \infty$.

Currently it is known that $n(p) \geq 1$ (Conway et al., 1988).

(□) (_□) (

Verifying the Mass Formula for small *p*

Strictly speaking, these terms are *lower bounds* found by enumerating r -ary ovoids in O_8^+ $\frac{1}{8}(\rho)$ for small r and testing for isomorphism. To compute $Aut(\mathcal{O})$, use nauty to determine Aut($\Delta(\mathcal{O})$) where $\Delta(\mathcal{O})$ is the associated two-graph. In general Aut(\mathcal{O}) \subseteq Aut($\Delta(\mathcal{O})$), and we check that equality holds in all cases. 4 ロ) (何) (日) (日)

Verifying the Mass Formula for small *p*

Strictly speaking, these terms are *lower bounds* found by enumerating *r*-ary ovoids in O_8^+ $\mathcal{B}^+_{8}(\rho)$ for small r and testing for isomorphism. To compute $Aut(\mathcal{O})$, use nauty to determine Aut($\Delta(\mathcal{O})$) where $\Delta(\mathcal{O})$ is the associated two-graph. In general Aut(\mathcal{O}) ⊂ Aut($\Delta(\mathcal{O})$), and we check that equality holds in all cases.

Canonical bijections between octonionic ovoids in O_{8}^{+} $^{+}_{8}(p)$

Fix odd primes $r \neq p$ and $u \in O$ such that $\int_{a}^{-p|u|^2}$ *r* $= +1.$ Denote the binary ovoid

$$
\mathcal{O}_{2,p,1}=\big\{\langle\overline{x}\rangle\,:\,\pm x\in\mathbb{Z}+2O,\;|x|^2=p\big\}.
$$

An alternative construction of the *r*-ary ovoid $O_{r,p,u}$ is via the canonical bijection

$$
f: \mathcal{O}_{r,p,u} \to \mathcal{O}_{2,p,1}
$$

constructed as follows. Given *w* ∈ Z*u* + *rO* with $|x|^2 = k(r-k)p, 1 \le k \le \frac{r-1}{2}$ $\frac{-1}{2}$, we have $W = XV$

for some $x, y \in O$ such that $|x|^2 = p$ and $|y|^2 = k(r - k)$. If we also require $x \in \mathbb{Z} + 2O$, then this factorization is unique up to a $±1$ factor and our bijection is

$$
f:\langle\overline{w}\rangle\mapsto\langle\overline{x}\rangle.
$$

 4 ロ } 4 6 } 4 3 } 4

Canonical bijections between octonionic ovoids in O_{8}^{+} $^{+}_{8}(p)$

Fix odd primes $r \neq p$ and $u \in O$ such that $\int_{a}^{-p|u|^2}$ *r* $= +1.$ Denote the binary ovoid

$$
\mathcal{O}_{2,\rho,1}=\big\{\langle\overline{x}\rangle\,:\,\pm x\in\mathbb{Z}+2O,\;|x|^2=\rho\big\}.
$$

An alternative construction of the *r*-ary ovoid $O_{r,p,u}$ is via the canonical bijection

$$
f: \mathcal{O}_{r,p,u} \to \mathcal{O}_{2,p,1}
$$

constructed as follows. Given $w \in \mathbb{Z}$ *u* + *rO* with $|x|^2 = k(r-k)p, 1 \leq k \leq \frac{r-1}{2}$ $\frac{-1}{2}$, we have $w = xv$

for some $x, y \in O$ such that $|x|^2 = p$ and $|y|^2 = k(r - k)$. If we also require $x \in \mathbb{Z} + 2O$, then this factorization is unique up to a $±1$ factor and our bijection is

$$
f:\langle\overline{w}\rangle\mapsto\langle\overline{x}\rangle.
$$

K ロ ト K 伊 ト K ヨ ト

Thank You!

Questions?

メロメメ 御きメモ メモ メーモ