Octonionic Ovoids

G. Eric Moorhouse

Department of Mathematics University of Wyoming

Third Mile High Conference on Nonassociative Mathematics 15 August 2013

G. Eric Moorhouse Octonionic Ovoids

< 17 ▶

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $x = (x_1, \dots, x_6) \in \mathbb{Z}^6$ such that

•
$$x_i \equiv 1 \mod 4$$
; and

$$\bigcirc \sum_i x_i^2 = 6p.$$

Then $|S| = p^2 + 1$; and for all $x \neq y$ in S, $x \cdot y \not\equiv 0 \mod p$.

Example (p = 5, $|S| = 5^2 + 1 = 26$)

S contains 6 vectors of shape (5, 1, 1, 1, 1, 1); 20 vectors of shape (-3, -3, -3, 1, 1, 1).

Example (p = 13, $|S| = 13^2 + 1 = 170$)

S contains 20 vectors of shape (5,5,5,1,1,1); 30 vectors of shape (-7,-5,1,1,1,1); 60 vectors of shape (5,5,-3,-3,-3,1); 60 vectors of shape (-7,-3,-3,-3,1,1);

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $x = (x_1, \ldots, x_6) \in \mathbb{Z}^6$ such that

$$x_i \equiv 1 \mod 4; \text{ and }$$

$$\bigcirc \sum_i x_i^2 = 6p.$$

Then $|\mathcal{S}| = p^2 + 1$; and for all $x \neq y$ in \mathcal{S} , $x \cdot y \not\equiv 0 \mod p$.

Example (p = 5, $|S| = 5^2 + 1 = 26$)

S contains 6 vectors of shape (5, 1, 1, 1, 1, 1); 20 vectors of shape (-3, -3, -3, 1, 1, 1).

Example (p = 13, $|S| = 13^2 + 1 = 170$)

S contains 20 vectors of shape (5,5,5,1,1,1); 30 vectors of shape (-7,-5,1,1,1,1); 60 vectors of shape (5,5,-3,-3,-3,1); 60 vectors of shape (-7,-3,-3,-3,1,1);

Octonionic Ovoids

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $x = (x_1, \ldots, x_6) \in \mathbb{Z}^6$ such that

$$x_i \equiv 1 \mod 4; and$$

$$\bigcirc \sum_i x_i^2 = 6p.$$

Then $|S| = p^2 + 1$; and for all $x \neq y$ in S, $x \cdot y \not\equiv 0 \mod p$.

Example $(p = 5, |S| = 5^2 + 1 = 26)$

S contains 6 vectors of shape (5, 1, 1, 1, 1, 1); 20 vectors of shape (-3, -3, -3, 1, 1, 1).

Example (p = 13, $|S| = 13^2 + 1 = 170$)

S contains 20 vectors of shape (5,5,5,1,1,1); 30 vectors of shape (-7,-5,1,1,1,1); 60 vectors of shape (5,5,-3,-3,-3,1); 60 vectors of shape (-7,-3,-3,-3,1,1)

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $x = (x_1, \ldots, x_6) \in \mathbb{Z}^6$ such that

$$x_i \equiv 1 \mod 4; and$$

Then $|\mathcal{S}| = p^2 + 1$; and for all $x \neq y$ in \mathcal{S} , $x \cdot y \not\equiv 0 \mod p$.

Example (p = 5, $|S| = 5^2 + 1 = 26$)

S contains 6 vectors of shape (5, 1, 1, 1, 1, 1); 20 vectors of shape (-3, -3, -3, 1, 1, 1).

Example (p = 13, $|S| = 13^2 + 1 = 170$)

S contains 20 vectors of shape (5,5,5,1,1,1); 30 vectors of shape (-7,-5,1,1,1,1); 60 vectors of shape (5,5,-3,-3,-3,1); 60 vectors of shape (-7,-3,-3,-3,1,1).

Let *V* be a 2*n*-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q: V \to \mathbb{F}_q$.

(*Projective*) *points* are 1-dimensional subspaces $\langle v \rangle < V$; such a point is *singular* if Q(v) = 0. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension *n*, if *Q* is chosen appropriately.

An *ovoid* is a set O of points of the quadric, meeting each generator exactly once. Equivalently, O is a set of $q^{n-1} + 1$ singular points, no two perpendicular.

Let *V* be a 2*n*-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q: V \to \mathbb{F}_q$.

(*Projective*) *points* are 1-dimensional subspaces $\langle v \rangle < V$; such a point is *singular* if Q(v) = 0. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension *n*, if *Q* is chosen appropriately.

An *ovoid* is a set O of points of the quadric, meeting each generator exactly once. Equivalently, O is a set of $q^{n-1} + 1$ singular points, no two perpendicular.

Let *V* be a 2*n*-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q: V \to \mathbb{F}_q$.

(*Projective*) *points* are 1-dimensional subspaces $\langle v \rangle < V$; such a point is *singular* if Q(v) = 0. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension *n*, if *Q* is chosen appropriately.

An *ovoid* is a set O of points of the quadric, meeting each generator exactly once. Equivalently, O is a set of $q^{n-1} + 1$ singular points, no two perpendicular.

Let *V* be a 2*n*-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q: V \to \mathbb{F}_q$.

(*Projective*) *points* are 1-dimensional subspaces $\langle v \rangle < V$; such a point is *singular* if Q(v) = 0. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension *n*, if *Q* is chosen appropriately.

An *ovoid* is a set O of points of the quadric, meeting each generator exactly once. Equivalently, O is a set of $q^{n-1} + 1$ singular points, no two perpendicular.

Let *V* be a 2*n*-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q: V \to \mathbb{F}_q$.

(*Projective*) *points* are 1-dimensional subspaces $\langle v \rangle < V$; such a point is *singular* if Q(v) = 0. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension *n*, if *Q* is chosen appropriately.

An *ovoid* is a set O of points of the quadric, meeting each generator exactly once. Equivalently, O is a set of $q^{n-1} + 1$ singular points, no two perpendicular.

Let *V* be a 2*n*-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q: V \to \mathbb{F}_q$.

(*Projective*) *points* are 1-dimensional subspaces $\langle v \rangle < V$; such a point is *singular* if Q(v) = 0. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension *n*, if *Q* is chosen appropriately.

An *ovoid* is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1} + 1$ singular points, no two perpendicular.

Let *V* be a 2*n*-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q: V \to \mathbb{F}_q$.

(*Projective*) *points* are 1-dimensional subspaces $\langle v \rangle < V$; such a point is *singular* if Q(v) = 0. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension *n*, if *Q* is chosen appropriately.

An *ovoid* is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1} + 1$ singular points, no two perpendicular.

Let *V* be a 2*n*-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q: V \to \mathbb{F}_q$.

(*Projective*) *points* are 1-dimensional subspaces $\langle v \rangle < V$; such a point is *singular* if Q(v) = 0. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension *n*, if *Q* is chosen appropriately.

An *ovoid* is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1} + 1$ singular points, no two perpendicular.

Let *V* be a 2*n*-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q: V \to \mathbb{F}_q$.

(*Projective*) *points* are 1-dimensional subspaces $\langle v \rangle < V$; such a point is *singular* if Q(v) = 0. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension *n*, if *Q* is chosen appropriately.

An *ovoid* is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1} + 1$ singular points, no two perpendicular.

Ovoids in $O_8^+(q)$ are known for *some* values of q, including all q = p prime (Conway et al., 1988). No ovoids in $O_{2n}^+(q)$ are known in dimension $2n \ge 10$.

ヘロン 人間 とくほど くほど

Let *V* be a 2*n*-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q: V \to \mathbb{F}_q$.

(*Projective*) *points* are 1-dimensional subspaces $\langle v \rangle < V$; such a point is *singular* if Q(v) = 0. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension *n*, if *Q* is chosen appropriately.

An *ovoid* is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1} + 1$ singular points, no two perpendicular.

Ovoids in $O_8^+(q)$ are known for *some* values of q, including all q = p prime (Conway et al., 1988). No ovoids in $O_{2n}^+(q)$ are known in dimension $2n \ge 10$.

ヘロト ヘヨト ヘヨト ヘ

The Ring O of Integral Octaves

Denote by *O* the *ring of integral octaves*. The octonion algebra is $\mathbb{O} = \mathbb{R} \otimes_{\mathbb{Z}} O$ and *O* is isometric to a root lattice of type E_8 in \mathbb{O} .

The set of units \mathbb{O}^{\times} is a Moufang loop of order 240, consisting of all elements of norm 1 in *O*.

For all $n \ge 1$, the number of elements $v \in O$ of *norm* $|v|^2 = n$ is 240 $\sigma_3(n) = 240 \sum_{1 \le d \mid n} d^3$.

Reduction mod *p* gives maps $\mathbb{Z} \to \mathbb{F}_p$ and $O \to V := O/pO$ denoted by ⁻. Equipped with the quadratic form

 $Q: V \to \mathbb{F}_{\rho}, \quad Q(\overline{x}) = \overline{|x|^2},$

V is an orthogonal space of type $O_8^+(p)$.

Denote by *O* the *ring of integral octaves*. The octonion algebra is $\mathbb{O} = \mathbb{R} \otimes_{\mathbb{Z}} O$ and *O* is isometric to a root lattice of type E_8 in \mathbb{O} .

The set of units \mathbb{O}^{\times} is a Moufang loop of order 240, consisting of all elements of norm 1 in *O*.

For all $n \ge 1$, the number of elements $v \in O$ of *norm* $|v|^2 = n$ is $240\sigma_3(n) = 240 \sum_{1 \le d \mid n} d^3.$

Reduction mod *p* gives maps $\mathbb{Z} \to \mathbb{F}_p$ and $O \to V := O/pO$ denoted by ⁻. Equipped with the quadratic form

 $Q: V o \mathbb{F}_{p}, \quad Q(\overline{x}) = \overline{|x|^{2}},$

V is an orthogonal space of type $O_8^+(p)$.

ヘロト ヘヨト ヘヨト ヘ

Denote by *O* the *ring of integral octaves*. The octonion algebra is $\mathbb{O} = \mathbb{R} \otimes_{\mathbb{Z}} O$ and *O* is isometric to a root lattice of type E_8 in \mathbb{O} .

The set of units \mathbb{O}^{\times} is a Moufang loop of order 240, consisting of all elements of norm 1 in *O*.

For all $n \ge 1$, the number of elements $v \in O$ of *norm* $|v|^2 = n$ is 240 $\sigma_3(n) = 240 \sum_{1 \le d \mid n} d^3$.

Reduction mod *p* gives maps $\mathbb{Z} \to \mathbb{F}_p$ and $O \to V := O/pO$ denoted by ⁻. Equipped with the quadratic form

 $Q: V \to \mathbb{F}_p, \quad Q(\overline{x}) = \overline{|x|^2},$

V is an orthogonal space of type $O_8^+(p)$.

・ロン ・四 と ・ ヨ と ・ ヨ と …

Denote by *O* the *ring of integral octaves*. The octonion algebra is $\mathbb{O} = \mathbb{R} \otimes_{\mathbb{Z}} O$ and *O* is isometric to a root lattice of type E_8 in \mathbb{O} .

The set of units \mathbb{O}^{\times} is a Moufang loop of order 240, consisting of all elements of norm 1 in *O*.

For all $n \ge 1$, the number of elements $v \in O$ of *norm* $|v|^2 = n$ is 240 $\sigma_3(n) = 240 \sum_{1 \le d \mid n} d^3$.

Reduction mod *p* gives maps $\mathbb{Z} \to \mathbb{F}_p$ and $O \to V := O/pO$ denoted by ⁻. Equipped with the quadratic form

 $Q: V \to \mathbb{F}_{p}, \quad Q(\overline{x}) = \overline{|x|^{2}},$

V is an orthogonal space of type $O_8^+(p)$.

イロト 不得 とくほ とくほ とうほ

Theorem (Conway, Kleidman & Wilson, 1988)

Let p be an odd prime. Fix a unit $u \in O^{\times}$. Let S be the set of vectors $x \in \mathbb{Z}u + 2O \subset O$ such that $|x|^2 = p$. Then $|S| = 2(p^3+1)$ and S consists of $p^3 + 1$ pairs $\pm x$. Reducing these vectors mod pO gives

$$\mathcal{O} = \mathcal{O}_{2,p,u} = \{ \langle \overline{x} \rangle : \pm x \in \mathcal{S} \},$$

an ovoid in $O/pO \simeq O_8^+(p)$.

The proof uses the most basic facts about the E_8 root lattice. Conway et al. also gave a construction of 'ternary' ovoids (replacing the prime 2 by 3 above).

< • > < </p>

Theorem (Conway, Kleidman & Wilson, 1988)

Let p be an odd prime. Fix a unit $u \in O^{\times}$. Let S be the set of vectors $x \in \mathbb{Z}u + 2O \subset O$ such that $|x|^2 = p$. Then $|S| = 2(p^3+1)$ and S consists of $p^3 + 1$ pairs $\pm x$. Reducing these vectors mod pO gives

$$\mathcal{O} = \mathcal{O}_{2,p,u} = \big\{ \langle \overline{x} \rangle : \pm x \in \mathcal{S} \big\},$$

an ovoid in $O/pO \simeq O_8^+(p)$.

The proof uses the most basic facts about the E_8 root lattice. Conway et al. also gave a construction of 'ternary' ovoids (replacing the prime 2 by 3 above).

Theorem (Conway, Kleidman & Wilson, 1988)

Let p be an odd prime. Fix a unit $u \in O^{\times}$. Let S be the set of vectors $x \in \mathbb{Z}u + 2O \subset O$ such that $|x|^2 = p$. Then $|S| = 2(p^3+1)$ and S consists of $p^3 + 1$ pairs $\pm x$. Reducing these vectors mod pO gives

$$\mathcal{O} = \mathcal{O}_{2,p,u} = \{ \langle \overline{x} \rangle : \pm x \in \mathcal{S} \},$$

an ovoid in $O/pO \simeq O_8^+(p)$.

The proof uses the most basic facts about the E_8 root lattice. Conway et al. also gave a construction of 'ternary' ovoids (replacing the prime 2 by 3 above).

The *r*-ary ovoids in $O_8^+(p)$

Theorem (M., 1993)

Let $r \neq p$ be odd primes. Fix $u \in O$ such that $\binom{-p|u|^2}{r} = +1$.

Let *S* be the set of vectors $x \in \mathbb{Z}u + rO \subset O$ such that $|x|^2 = k(r - k)p$ for some $k \in \{1, 2, \dots, \frac{r-1}{2}\}$. Then $|S| = 2(p^3+1)$ and *S* consists of p^3+1 pairs $\pm x$. Reducing these vectors mod pO gives

$$\mathcal{O} = \mathcal{O}_{r,p,u} = \{ \langle \overline{x} \rangle : \pm x \in \mathcal{S} \},$$

an ovoid in $O/pO \simeq O_8^+(p)$. (Some degenerate cases occur for r > p.)

The proof uses facts about E_8 and the fact that $E_8 \oplus E_8$ has $480\sigma_7(n)$ elements of norm $n \ge 1$. (*Or O* and theorems on factorization in *O*). Ovoids isomorphic to $\mathcal{O}_{r,p,u}$ (for primes $r \ne p$, including r = 2) are the *r*-ary ovoids of octonionic type is $O_8^+(p)$.

Let $r \neq p$ be odd primes. Fix $u \in O$ such that $\binom{-p|u|^2}{r} = +1$. Let S be the set of vectors $x \in \mathbb{Z}u + rO \subset O$ such that $|x|^2 = k(r-k)p$ for some $k \in \{1, 2, \dots, \frac{r-1}{2}\}$. Then $|S| = 2(p^3+1)$ and S consists of p^3+1 pairs $\pm x$. Reducing these vectors mod pO gives $\mathcal{O} = \mathcal{O}_{r,p,u} = \{\langle \overline{x} \rangle : \pm x \in S\},\$ an ovoid in $O/pO \simeq O_8^+(p)$. (Some degenerate cases occur for r > p.)

The proof uses facts about E_8 and the fact that $E_8 \oplus E_8$ has $480\sigma_7(n)$ elements of norm $n \ge 1$. (*Or O* and theorems on factorization in *O*). Ovoids isomorphic to $\mathcal{O}_{r,p,u}$ (for primes $r \ne p$, including r = 2) are the *r*-ary ovoids of octonionic type in $\mathcal{O}_8^+(p)$.

Let $r \neq p$ be odd primes. Fix $u \in O$ such that $\binom{-p|u|^2}{r} = +1$. Let *S* be the set of vectors $x \in \mathbb{Z}u + rO \subset O$ such that $|x|^2 = k(r-k)p$ for some $k \in \{1, 2, \dots, \frac{r-1}{2}\}$. Then $|S| = 2(p^3+1)$ and *S* consists of p^3+1 pairs $\pm x$. Reducing these vectors mod pO gives

$$\mathcal{O} = \mathcal{O}_{r,p,u} = \{ \langle \overline{x} \rangle : \pm x \in \mathcal{S} \},$$

an ovoid in $O/pO \simeq O_8^+(p)$. (Some degenerate cases occur for r > p.)

The proof uses facts about E_8 and the fact that $E_8 \oplus E_8$ has $480\sigma_7(n)$ elements of norm $n \ge 1$. (*Or O* and theorems on factorization in *O*). Ovoids isomorphic to $\mathcal{O}_{r,p,u}$ (for primes $r \ne p$, including r = 2) are the *r*-ary ovoids of octonionic type i $\mathcal{O}_8^+(p)$.

Let $r \neq p$ be odd primes. Fix $u \in O$ such that $\binom{-p|u|^2}{r} = +1$. Let *S* be the set of vectors $x \in \mathbb{Z}u + rO \subset O$ such that $|x|^2 = k(r-k)p$ for some $k \in \{1, 2, \dots, \frac{r-1}{2}\}$. Then $|S| = 2(p^3+1)$ and *S* consists of p^3+1 pairs $\pm x$. Reducing these vectors mod pO gives

$$\mathcal{O} = \mathcal{O}_{r,p,u} = \big\{ \langle \overline{x} \rangle : \pm x \in \mathcal{S} \big\},$$

an ovoid in $O/pO \simeq O_8^+(p)$. (Some degenerate cases occur for r > p.)

The proof uses facts about E_8 and the fact that $E_8 \oplus E_8$ has $480\sigma_7(n)$ elements of norm $n \ge 1$. (*Or O* and theorems on factorization in *O*). Ovoids isomorphic to $\mathcal{O}_{r,p,u}$ (for primes $r \ne p$, including r = 2) are the *r*-ary ovoids of octonionic type $\mathcal{O}_8^+(p)$.

Let $r \neq p$ be odd primes. Fix $u \in O$ such that $\binom{-p|u|^2}{r} = +1$. Let S be the set of vectors $x \in \mathbb{Z}u + rO \subset O$ such that $|x|^2 = k(r-k)p$ for some $k \in \{1, 2, \dots, \frac{r-1}{2}\}$. Then $|S| = 2(p^3+1)$ and S consists of p^3+1 pairs $\pm x$. Reducing these vectors mod pO gives

$$\mathcal{O} = \mathcal{O}_{r,p,u} = \big\{ \langle \overline{x} \rangle : \pm x \in \mathcal{S} \big\},$$

an ovoid in $O/pO \simeq O_8^+(p)$. (Some degenerate cases occur for r > p.)

The proof uses facts about E_8 and the fact that $E_8 \oplus E_8$ has $480\sigma_7(n)$ elements of norm $n \ge 1$. (*Or O* and theorems on factorization in *O*). Ovoids isomorphic to $\mathcal{O}_{r,p,u}$ (for primes $r \ne p$, including r = 2) are the *r*-ary ovoids of octonionic type in $\mathcal{O}_8^+(p)$.

- For each *p*, there are infinitely many choices of *r*, *u* to choose in constructing *O_{r,p,u}* but only finitely many ovoids in *O*⁺₈(*p*). How many? How do we know when we have found them all?
- 2 Let w(p) be the number of isomorphism classes of octonionic ovoids in O⁺₈(p). Does w(p) → ∞ as p → ∞? (By Conway et al. (1988), w(p) ≥ 1.)
- 3 r, p don't really have to be primes. Does anything comparable work in $O_8^+(q)$?
- Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(p)$; but no rigid ovoids in $O_8^+(q)$ have been found.
- What is *really going on* in the construction of octonionic ovoids?

ヘロト ヘワト ヘビト ヘビト

- For each *p*, there are infinitely many choices of *r*, *u* to choose in constructing *O_{r,p,u}* but only finitely many ovoids in *O*⁺₈(*p*). How many? How do we know when we have found them all?
- 2 Let w(p) be the number of isomorphism classes of octonionic ovoids in O⁺₈(p). Does w(p) → ∞ as p → ∞? (By Conway et al. (1988), w(p) ≥ 1.)
- 3 r, p don't really have to be primes. Does anything comparable work in $O_8^+(q)$?
- Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(p)$; but no rigid ovoids in $O_8^+(q)$ have been found.
- What is *really going on* in the construction of octonionic ovoids?

э

・ロト ・ 理 ト ・ ヨ ト ・

- For each *p*, there are infinitely many choices of *r*, *u* to choose in constructing *O_{r,p,u}* but only finitely many ovoids in *O*⁺₈(*p*). How many? How do we know when we have found them all?
- 2 Let w(p) be the number of isomorphism classes of octonionic ovoids in O⁺₈(p). Does w(p) → ∞ as p → ∞? (By Conway et al. (1988), w(p) ≥ 1.)
- r, p don't really have to be primes. Does anything comparable work in $O_8^+(q)$?
- Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(p)$; but no rigid ovoids in $O_8^+(q)$ have been found.
- What is *really going on* in the construction of octonionic ovoids?

э

ヘロン ヘアン ヘビン ヘビン

- For each *p*, there are infinitely many choices of *r*, *u* to choose in constructing *O_{r,p,u}* but only finitely many ovoids in *O*⁺₈(*p*). How many? How do we know when we have found them all?
- 2 Let w(p) be the number of isomorphism classes of octonionic ovoids in O⁺₈(p). Does w(p) → ∞ as p → ∞? (By Conway et al. (1988), w(p) ≥ 1.)
- r, p don't really have to be primes. Does anything comparable work in $O_8^+(q)$?
- Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(p)$; but no rigid ovoids in $O_8^+(q)$ have been found.
- What is *really going on* in the construction of octonionic ovoids?

э

ヘロン ヘアン ヘビン ヘビン

- For each *p*, there are infinitely many choices of *r*, *u* to choose in constructing *O_{r,p,u}* but only finitely many ovoids in *O*⁺₈(*p*). How many? How do we know when we have found them all?
- 2 Let w(p) be the number of isomorphism classes of octonionic ovoids in O⁺₈(p). Does w(p) → ∞ as p → ∞? (By Conway et al. (1988), w(p) ≥ 1.)
- r, p don't really have to be primes. Does anything comparable work in $O_8^+(q)$?
- Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(p)$; but no rigid ovoids in $O_8^+(q)$ have been found.
- What is *really going on* in the construction of octonionic ovoids?

ヘロト ヘヨト ヘヨト ヘ

- For each *p*, there are infinitely many choices of *r*, *u* to choose in constructing *O_{r,p,u}* but only finitely many ovoids in *O*⁺₈(*p*). How many? How do we know when we have found them all?
- 2 Let w(p) be the number of isomorphism classes of octonionic ovoids in O⁺₈(p). Does w(p) → ∞ as p → ∞?
 (By Conway et al. (1988), w(p) ≥ 1.)
- r, p don't really have to be primes. Does anything comparable work in $O_8^+(q)$?
- Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(p)$; but no rigid ovoids in $O_8^+(q)$ have been found.
- What is *really going on* in the construction of octonionic ovoids?

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_w$ be representatives for the isomorphism types of octonionic ovoids in $\mathcal{O}_8^+(p)$, under $\mathcal{G} = \mathcal{P}\mathcal{G}\mathcal{O}_8^+(p)$. The number of ovoids isomorphic to \mathcal{O}_i is $[\mathcal{G} : \mathcal{G}_{\mathcal{O}_i}]$; note that

$$|G| = |PGO_8^+(p)| = \frac{2}{d}p^{12}(p^6 - 1)(p^4 - 1)^2(p^2 - 1)$$

where d = gcd(p - 1, 2).

The subgroup $W(E_8)/\{\pm l\}\cong PGO_8^+(2)\leqslant G$ has order

 $|PGO_8^+(2)| = 348,364,800.$

・ロン ・四 と ・ ヨ と ・ ヨ と …

Let $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_w$ be representatives for the isomorphism types of octonionic ovoids in $\mathcal{O}_8^+(p)$, under $\mathcal{G} = \mathcal{P}\mathcal{G}\mathcal{O}_8^+(p)$. The number of ovoids isomorphic to \mathcal{O}_i is $[\mathcal{G} : \mathcal{G}_{\mathcal{O}_i}]$; note that

$$|G| = |PGO_8^+(p)| = \frac{2}{d}p^{12}(p^6 - 1)(p^4 - 1)^2(p^2 - 1)$$

where d = gcd(p - 1, 2).

The subgroup $W(E_8)/\{\pm I\} \cong PGO_8^+(2) \leqslant G$ has order

 $|PGO_8^+(2)| = 348,364,800.$

The stabilizers $G_{\mathcal{O}_i}$ are not necessarily subgroups of $PGO_8^+(2)$. I am not claiming that the terms in this sum are always integers (but in every known case they are).

The cases p = 2,3 are genuine exceptions. (When p = 3 the octonionic ovoids lie in hyperplanes.)

A B > A B >

Conjectured Mass Formula
For
$$p \ge 5$$
,

$$\sum_{i=1}^{w(p)} [G: G_{\mathcal{O}_i}] = \frac{|G|(p^4 + 239)}{4|PGO_8^+(2)|};$$
i.e.

$$\frac{|PGO_8^+(2)|}{|G_{\mathcal{O}_1}|} + \frac{|PGO_8^+(2)|}{|G_{\mathcal{O}_2}|} + \dots + \frac{|PGO_8^+(2)|}{|G_{\mathcal{O}_w}|} = \frac{p^4 + 239}{4}.$$

The stabilizers $G_{\mathcal{O}_i}$ are not necessarily subgroups of $PGO_8^+(2)$. I am not claiming that the terms in this sum are always integers (but in every known case they are).

The cases p = 2,3 are genuine exceptions. (When p = 3 the octonionic ovoids lie in hyperplanes.)

Conjectured Mass Formula
For
$$p \ge 5$$
,

$$\sum_{i=1}^{w(p)} [G: G_{\mathcal{O}_i}] = \frac{|G|(p^4 + 239)}{4|PGO_8^+(2)|};$$
i.e.

$$\frac{|PGO_8^+(2)|}{|G_{\mathcal{O}_1}|} + \frac{|PGO_8^+(2)|}{|G_{\mathcal{O}_2}|} + \dots + \frac{|PGO_8^+(2)|}{|G_{\mathcal{O}_w}|} = \frac{p^4 + 239}{4}.$$

The stabilizers $G_{\mathcal{O}_i}$ are not necessarily subgroups of $PGO_8^+(2)$. I am not claiming that the terms in this sum are always integers (but in every known case they are).

The cases p = 2, 3 are genuine exceptions. (When p = 3 the octonionic ovoids lie in hyperplanes.)

Corollary

Let n(p) be the number of isomorphism types of ovoids in $O_8^+(p)$. If the Mass Formula holds, then for some absolute constant C > 0, $n(p) \ge Cp^4 \to \infty$ as $p \to \infty$.

Currently it is known that $n(p) \ge 1$ (Conway et al., 1988).

Verifying the Mass Formula for small p

р	w(p)	Mass Formula
5	2	$96+120 = 216 = \frac{5^4+239}{4}$
7	2	$120 + 540 = 660 = \frac{7^4 + 239}{4}$
11	4	$120 + 120 + 960 + 2520 = 3720 = \frac{11^4 + 239}{4}$
13	4	$120 + 1080 + 1680 + 4320 = 7200 = \frac{13^4 + 239}{4}$
17	7	$120 + 120 + 540 + 960 + 3360 + 4320 + 11520 = 20940 = \frac{17^4 + 239}{4}$
19	6	$120+120+1080+7560+8640+15120 = 32640 = \frac{19^4+239}{4}$
23	10	$\begin{array}{r} 120 + 120 + 120 + 540 + 960 + 2520 + 3360 \\ + 7560 + 20160 + 34560 = 70020 = \frac{23^4 + 239}{4} \end{array}$

Strictly speaking, these terms are *lower bounds* found by enumerating *r*-ary ovoids in $O_8^+(p)$ for small *r* and testing for isomorphism. To compute Aut(\mathcal{O}), use nauty to determine Aut($\Delta(\mathcal{O})$) where $\Delta(\mathcal{O})$ is the associated two-graph. In general Aut(\mathcal{O}) \subseteq Aut($\Delta(\mathcal{O})$), and we check that equality holds in all cases.

Verifying the Mass Formula for small p

р	w(p)	Mass Formula
5	2	$96+120 = 216 = \frac{5^4+239}{4}$
7	2	$120+540 = 660 = \frac{7^4+239}{4}$
11	4	$120+120+960+2520 = 3720 = \frac{11^4+239}{4}$
13	4	$120+1080+1680+4320 = 7200 = \frac{13^4+239}{4}$
17	7	$120+120+540+960+3360+4320+11520 = 20940 = \frac{17^4+239}{4}$
19	6	$120+120+1080+7560+8640+15120 = 32640 = \frac{19^4+239}{4}$
23	10	$\begin{array}{r} 120 + 120 + 120 + 540 + 960 + 2520 + 3360 \\ + 7560 + 20160 + 34560 = 70020 = \frac{23^4 + 239}{4} \end{array}$

Strictly speaking, these terms are *lower bounds* found by enumerating *r*-ary ovoids in $O_8^+(p)$ for small *r* and testing for isomorphism. To compute Aut(\mathcal{O}), use nauty to determine Aut($\Delta(\mathcal{O})$) where $\Delta(\mathcal{O})$ is the associated two-graph. In general Aut(\mathcal{O}) \subseteq Aut($\Delta(\mathcal{O})$), and we check that equality holds in all cases.

Canonical bijections between octonionic ovoids in $O_8^+(p)$

Fix odd primes $r \neq p$ and $u \in O$ such that $\binom{-p|u|^2}{r} = +1$. Denote the binary ovoid

$$\mathcal{O}_{2,p,1} = \big\{ \langle \overline{x} \rangle \, : \, \pm x \in \mathbb{Z} + 2O, \; |x|^2 = p \big\}.$$

An alternative construction of the *r*-ary ovoid $\mathcal{O}_{r,p,u}$ is via the canonical bijection

$$f: \mathcal{O}_{r,p,u} \to \mathcal{O}_{2,p,1}$$

constructed as follows. Given $w \in \mathbb{Z}u + rO$ with $|x|^2 = k(r-k)p$, $1 \le k \le \frac{r-1}{2}$, we have w = xy

for some $x, y \in O$ such that $|x|^2 = p$ and $|y|^2 = k(r - k)$. If we also require $x \in \mathbb{Z} + 2O$, then this factorization is unique up to a ± 1 factor and our bijection is

$$f:\langle \overline{W}\rangle\mapsto \langle \overline{X}\rangle.$$

・ロト ・ 日 ・ ・ 田 ・

Canonical bijections between octonionic ovoids in $O_8^+(p)$

Fix odd primes $r \neq p$ and $u \in O$ such that $\binom{-p|u|^2}{r} = +1$. Denote the binary ovoid

$$\mathcal{O}_{2,p,1} = \big\{ \langle \overline{x} \rangle \, : \, \pm x \in \mathbb{Z} + 2O, \; |x|^2 = p \big\}.$$

An alternative construction of the *r*-ary ovoid $\mathcal{O}_{r,p,u}$ is via the canonical bijection

$$f: \mathcal{O}_{r,p,u} \to \mathcal{O}_{2,p,1}$$

constructed as follows. Given $w \in \mathbb{Z}u + rO$ with $|x|^2 = k(r-k)p$, $1 \le k \le \frac{r-1}{2}$, we have w = xy

for some $x, y \in O$ such that $|x|^2 = p$ and $|y|^2 = k(r - k)$. If we also require $x \in \mathbb{Z} + 2O$, then this factorization is unique up to a ± 1 factor and our bijection is

$$f:\langle \overline{w}\rangle\mapsto \langle \overline{x}\rangle.$$

▶ ★ 同 ▶ ★ 臣 ▶

Thank You!

Questions?

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─ 臣