Partial Spreads and Flocks over Infinite Fields

G. Eric Moorhouse

Department of Mathematics University of Wyoming

 $\|\cdot\|$ Fest 2009

-

э

over $\mathbb Q$ over $\mathbb R$

Spreads

A *partial spread* in projective 3-space $\mathbb{P}^3 F$ is a set of mutually skew (i.e. mutually disjoint) lines. Its *deficiency* is the number of points not covered.

A *spread* is a set of mutually skew lines which partitions the points (i.e. deficiency=0).

A *dual spread* is a set Σ of mutually skew lines such that every plane contains a unique $\ell \in \Sigma$. (For $|F| < \infty$, a spread is the same as a dual spread.)

A *bispread* is a spread which is also a dual spread.

Spread of $\mathbb{P}^3 F \leftrightarrow$ Translation plane of dimension 2 over F

Spreads

A *partial spread* in projective 3-space $\mathbb{P}^3 F$ is a set of mutually skew (i.e. mutually disjoint) lines. Its *deficiency* is the number of points not covered.

A *spread* is a set of mutually skew lines which partitions the points (i.e. deficiency=0).

A *dual spread* is a set Σ of mutually skew lines such that every plane contains a unique $\ell \in \Sigma$. (For $|F| < \infty$, a spread is the same as a dual spread.)

A *bispread* is a spread which is also a dual spread.

Spread of $\mathbb{P}^3 F \leftrightarrow$ Translation plane of dimension 2 over F

Image: A match a ma

Spreads

A *partial spread* in projective 3-space $\mathbb{P}^3 F$ is a set of mutually skew (i.e. mutually disjoint) lines. Its *deficiency* is the number of points not covered.

A *spread* is a set of mutually skew lines which partitions the points (i.e. deficiency=0).

A *dual spread* is a set Σ of mutually skew lines such that every plane contains a unique $\ell \in \Sigma$. (For $|F| < \infty$, a spread is the same as a dual spread.)

A *bispread* is a spread which is also a dual spread.

Spread of $\mathbb{P}^3 F \leftrightarrow$ Translation plane of dimension 2 over F

Image: A matrix and a matrix

Spreads

A *partial spread* in projective 3-space $\mathbb{P}^3 F$ is a set of mutually skew (i.e. mutually disjoint) lines. Its *deficiency* is the number of points not covered.

A *spread* is a set of mutually skew lines which partitions the points (i.e. deficiency=0).

A *dual spread* is a set Σ of mutually skew lines such that every plane contains a unique $\ell \in \Sigma$. (For $|F| < \infty$, a spread is the same as a dual spread.)

A *bispread* is a spread which is also a dual spread.

Spread of $\mathbb{P}^3 F \leftrightarrow$ Translation plane of dimension 2 over F

Spreads

A *partial spread* in projective 3-space $\mathbb{P}^3 F$ is a set of mutually skew (i.e. mutually disjoint) lines. Its *deficiency* is the number of points not covered.

A *spread* is a set of mutually skew lines which partitions the points (i.e. deficiency=0).

A *dual spread* is a set Σ of mutually skew lines such that every plane contains a unique $\ell \in \Sigma$. (For $|F| < \infty$, a spread is the same as a dual spread.)

A *bispread* is a spread which is also a dual spread.

Spread of $\mathbb{P}^{3}F \leftrightarrow$ Translation plane of dimension 2 over F

4 D b 4 A b

Spreads

A *partial spread* in projective 3-space $\mathbb{P}^3 F$ is a set of mutually skew (i.e. mutually disjoint) lines. Its *deficiency* is the number of points not covered.

A *spread* is a set of mutually skew lines which partitions the points (i.e. deficiency=0).

Possible deficiencies of partial spreads over various fields F:

F	Deficiency	
\mathbb{F}_q	<i>k</i> (<i>q</i> +1)	$0\leqslant k\leqslant q^2+1$
\mathbb{Q}	$\leqslant \aleph_0$	
\mathbb{R}	$\leqslant 2^{leph_0}$	Note: $ \mathbb{R} = 2^{\aleph_0}$
		・ロト ・ 四 ト ・ 三 ト ・ 三 ト

Spreads

A *partial spread* in projective 3-space $\mathbb{P}^3 F$ is a set of mutually skew (i.e. mutually disjoint) lines. Its *deficiency* is the number of points not covered.

A *spread* is a set of mutually skew lines which partitions the points (i.e. deficiency=0).

Possible deficiencies of partial spreads over various fields F:

F	Deficiency	
\mathbb{F}_{q}	k(q+1)	$0\leqslant k\leqslant q^2+1$
\mathbb{Q}	$\leqslant \aleph_0$	
\mathbb{R}	$\leqslant 2^{leph_0}$	Note: $ \mathbb{R} = 2^{\aleph_0}$
F infinite	$\leqslant F $	

Spreads

A *partial spread* in projective 3-space $\mathbb{P}^3 F$ is a set of mutually skew (i.e. mutually disjoint) lines. Its *deficiency* is the number of points not covered.

A *spread* is a set of mutually skew lines which partitions the points (i.e. deficiency=0).

Possible deficiencies of partial spreads over various fields F:

F	Deficiency	
$\mathbb{F}_{oldsymbol{q}}$	<i>k</i> (<i>q</i> +1)	$0\leqslant k\leqslant q^2+1$
Q	≼ ℵ₀	
\mathbb{R}	$\leqslant 2^{\aleph_0}$	Note: $ \mathbb{R} = 2^{\aleph_0}$
F infinite	$\leqslant F $	

over \mathbb{Q} over \mathbb{R}

Theorem

If $\mathcal{B} = \{B_1, \ldots, B_n\}$ are distinct points of $\mathbb{P}^3\mathbb{Q}$, then there exists a partial spread of $\mathbb{P}^3\mathbb{Q}$ of deficiency n omitting precisely the points of \mathcal{B} .

Proof. Enumerate the points of $\mathbb{P}^3\mathbb{Q} \smallsetminus \mathcal{B}$ as P_0, P_1, P_2, \ldots . Inductively define a chain of partial spreads

 $\Sigma_0\subseteq \Sigma_1\subseteq \Sigma_2\subseteq \cdots$

such that $P_i \in \bigcup \Sigma_j$ whenever i < j; and the partial spread $\Sigma = \bigcup_{j \ge 0} \Sigma_j$ satisfies $\bigcup \Sigma = \mathbb{P}^3 \mathbb{Q} \setminus \mathcal{B}$. Define $\Sigma_0 = \emptyset$ and $\Sigma_{j+1} = \begin{cases} \Sigma_j, & \text{if } P_j \in \bigcup \Sigma_j; \\ \Sigma_j \cup \{\ell\}, & \text{if } P_j \notin \bigcup \Sigma_j; \text{line } \ell \ni P_j \text{ disjoint from } \mathcal{B} \cup (\bigcup \Sigma_j). \end{cases}$

over \mathbb{Q} over \mathbb{R}

Theorem

If $\mathcal{B} = \{B_1, \ldots, B_n\}$ are distinct points of $\mathbb{P}^3\mathbb{Q}$, then there exists a partial spread of $\mathbb{P}^3\mathbb{Q}$ of deficiency n omitting precisely the points of \mathcal{B} .

Proof. Enumerate the points of $\mathbb{P}^3\mathbb{Q} \smallsetminus \mathcal{B}$ as P_0, P_1, P_2, \ldots . Inductively define a chain of partial spreads

 $\Sigma_0 \subseteq \Sigma_1 \subseteq \Sigma_2 \subseteq \cdots$

such that $P_i \in \bigcup \Sigma_j$ whenever i < j; and the partial spread $\Sigma = \bigcup_{j \ge 0} \Sigma_j$ satisfies $\bigcup \Sigma = \mathbb{P}^3 \mathbb{Q} \smallsetminus \mathcal{B}$. Define $\Sigma_0 = \emptyset$ and $\Sigma_{j+1} = \begin{cases} \Sigma_j, & \text{if } P_j \in \bigcup \Sigma_j; \\ \Sigma_j \cup \{\ell\}, & \text{if } P_j \notin \bigcup \Sigma_j; \text{line } \ell \ni P_j \text{ disjoint from } \mathcal{B} \cup (\bigcup \Sigma_j). \end{cases}$

over \mathbb{Q} over \mathbb{R}

Theorem

If $\mathcal{B} = \{B_1, \ldots, B_n\}$ are distinct points of $\mathbb{P}^3\mathbb{Q}$, then there exists a partial spread of $\mathbb{P}^3\mathbb{Q}$ of deficiency n omitting precisely the points of \mathcal{B} .

Proof. Enumerate the points of $\mathbb{P}^3\mathbb{Q} \smallsetminus \mathcal{B}$ as P_0, P_1, P_2, \ldots . Inductively define a chain of partial spreads

$$\Sigma_0\subseteq \Sigma_1\subseteq \Sigma_2\subseteq \cdots$$

such that $P_i \in \bigcup \Sigma_j$ whenever i < j; and the partial spread $\Sigma = \bigcup_{j \ge 0} \Sigma_j$ satisfies $\bigcup \Sigma = \mathbb{P}^3 \mathbb{Q} \setminus \mathcal{B}$. Define $\Sigma_0 = \emptyset$ and $\Sigma_{j+1} = \begin{cases} \Sigma_j, & \text{if } P_j \in \bigcup \Sigma_j; \\ \Sigma_j \cup \{\ell\}, & \text{if } P_j \notin \bigcup \Sigma_j; \end{cases}$ line $\ell \ni P_j$ disjoint from $\mathcal{B} \cup (\bigcup \Sigma_j)$

over \mathbb{Q} over \mathbb{R}

Theorem

If $\mathcal{B} = \{B_1, \ldots, B_n\}$ are distinct points of $\mathbb{P}^3\mathbb{Q}$, then there exists a partial spread of $\mathbb{P}^3\mathbb{Q}$ of deficiency n omitting precisely the points of \mathcal{B} .

Proof. Enumerate the points of $\mathbb{P}^3\mathbb{Q} \smallsetminus \mathcal{B}$ as P_0, P_1, P_2, \ldots . Inductively define a chain of partial spreads

$$\Sigma_0\subseteq \Sigma_1\subseteq \Sigma_2\subseteq \cdots$$

such that $P_i \in \bigcup \Sigma_j$ whenever i < j; and the partial spread $\Sigma = \bigcup_{j \ge 0} \Sigma_j$ satisfies $\bigcup \Sigma = \mathbb{P}^3 \mathbb{Q} \smallsetminus \mathcal{B}$. Define $\Sigma_0 = \emptyset$ and $\Sigma_{j+1} = \begin{cases} \Sigma_j, & \text{if } P_j \in \bigcup \Sigma_j; \\ \Sigma_j \cup \{\ell\}, & \text{if } P_j \notin \bigcup \Sigma_j; \text{line } \ell \ni P_j \text{ disjoint from } \mathcal{B} \cup (\bigcup \Sigma_j), \end{cases}$

イロト イヨト イヨト イヨト

over \mathbb{Q} over \mathbb{R}

Theorem

If $\mathcal{B} = \{B_1, \ldots, B_n\}$ are distinct points of $\mathbb{P}^3\mathbb{Q}$, then there exists a partial spread of $\mathbb{P}^3\mathbb{Q}$ of deficiency n omitting precisely the points of \mathcal{B} .

Improvement, also by induction:

Theorem

Every finite partial spread of $\mathbb{P}^3\mathbb{Q}$ can be completed to a spread.

Moreover if $\Sigma = \{\ell_1, \ldots, \ell_m\}$ is a partial spread and $\mathcal{B} = \{B_1, B_2, \ldots, B_n\}$ are distinct points not in $\bigcup \Sigma$, then Σ may be extended to a partial spread of deficiency n omitting precisely the points of \mathcal{B} .

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A similar result holds for *real* projective 3-space, by transfinite induction:

Theorem

Every partial spread Σ of $\mathbb{P}^3\mathbb{R}$ of cardinality $|\Sigma| < 2^{\aleph_0}$ can be completed to a spread.

Moreover if $\mathcal{B} \subset \mathbb{P}^3\mathbb{R}$ is a point set of cardinality $|\mathcal{B}| < 2^{\aleph_0}$ disjoint from $\bigcup \Sigma$, then Σ may be extended to a partial spread omitting precisely the points of \mathcal{B} (deficiency = $|\mathcal{B}|$).

In particular $\mathbb{R}^3 \setminus \{O\}$ can be partitioned into lines. Is there a direct way to show this (without transfinite induction)?

A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A similar result holds for *real* projective 3-space, by transfinite induction:

Theorem

Every partial spread Σ of $\mathbb{P}^3\mathbb{R}$ of cardinality $|\Sigma| < 2^{\aleph_0}$ can be completed to a spread.

Moreover if $\mathcal{B} \subset \mathbb{P}^3\mathbb{R}$ is a point set of cardinality $|\mathcal{B}| < 2^{\aleph_0}$ disjoint from $\bigcup \Sigma$, then Σ may be extended to a partial spread omitting precisely the points of \mathcal{B} (deficiency = $|\mathcal{B}|$).

In particular $\mathbb{R}^3 \setminus \{O\}$ can be partitioned into lines. Is there a direct way to show this (without transfinite induction)?

A similar result holds for *real* projective 3-space, by transfinite induction:

Theorem

Every partial spread Σ of $\mathbb{P}^3\mathbb{R}$ of cardinality $|\Sigma| < 2^{\aleph_0}$ can be completed to a spread.

Moreover if $\mathcal{B} \subset \mathbb{P}^3\mathbb{R}$ is a point set of cardinality $|\mathcal{B}| < 2^{\aleph_0}$ disjoint from $\bigcup \Sigma$, then Σ may be extended to a partial spread omitting precisely the points of \mathcal{B} (deficiency = $|\mathcal{B}|$).

In particular $\mathbb{R}^3 \setminus \{O\}$ can be partitioned into lines. Is there a direct way to show this (without transfinite induction)?

over $\mathbb R$ over $\mathbb Q$

Quadratic Cones

< 47 ►

< 3

over $\mathbb R$ over $\mathbb Q$

Quadratic Cones

over $\mathbb R$ over $\mathbb Q$

Flocks

A **partial flock of the cone** is a collection of mutually disjoint conics (plane sections) of the cylinder (i.e. the cone minus its vertex).

The **deficiency** of a partial flock is the number of points of the cylinder not covered.

A **flock of the cone** is a partition of the points of the cylinder into conics (deficiency=0).

over $\mathbb R$ over $\mathbb Q$

Flocks

A **partial flock of the cone** is a collection of mutually disjoint conics (plane

sections) of the cylinder (i.e. the cone minus its vertex).

The **deficiency** of a partial flock is the number of points of the cylinder not covered.

A **flock of the cone** is a partition of the points of the cylinder into conics (deficiency=0).

over $\mathbb R$ over $\mathbb Q$

Flocks

A **partial flock of the cone** is a collection of mutually disjoint conics (plane sections) of the cylinder (i.e. the cone minus its vertex).

The **deficiency** of a partial flock is the number of points of the cylinder not covered.

A **flock of the cone** is a partition of the points of the cylinder into conics (deficiency=0).

Possible deficiencies of partial flocks over various fields F:

F	Cone	Elliptic	Hyperbolic	
\mathbb{F}_q	k(q+1)	2+ <i>k</i> (<i>q</i> +1)	k(q+1)	$0\leqslant k\leqslant q{+}arepsilon$ *
\mathbb{R}	0 or 2 ^{ℵ₀}	2 or 2^{\aleph_0}	0 or 2 ^{ℵ₀}	
Q	$\leqslant \aleph_0$	$\leqslant \aleph_0$	$\leqslant \aleph_0$	

(*) $\varepsilon = 0, -1, +1$ for cone, elliptic, hyperbolic quadric

イロト イロト イヨト イヨト

э

Possible deficiencies of partial flocks over various fields F:

F	Cone	Elliptic	Hyperbolic	
\mathbb{F}_q	k(q+1)	2+k(q+1)	k(q+1)	$0\leqslant k\leqslant q{+}arepsilon$ *
\mathbb{R}	0 or 2 ^{ℵ₀}	2 or 2^{\aleph_0}	0 or 2 ^{ℵ₀}	
Q	$\leqslant \aleph_0$	$\leqslant \aleph_0$	$\leqslant \aleph_0$	

(*) $\varepsilon = 0, -1, +1$ for cone, elliptic, hyperbolic quadric

イロト イロト イヨト イヨト

э

over \mathbb{R} over \mathbb{Q}

Theorem

A partial flock of a real quadratic cone has deficiency 0 or 2^{\aleph_0} .

Proof. Consider a partial flock of deficiency $< 2^{\aleph_0}$. Then there exist at least three lines of the cylinder, each of which is covered by the flock. Ellipses of the flock meet these lines in points

 $(x_1, y_1, t), (x_2, y_2, f(t)), (x_3, y_3, g(t))$

for $t \in \mathbb{R}$ where $f, g : \mathbb{R} \to \mathbb{R}$ are bijective and increasing, hence continuous. Now the ellipses of the flock must cover the entire cylinder.

A D > A D >

over $\mathbb R$ over $\mathbb Q$

Theorem

A partial flock of a real quadratic cone has deficiency 0 or 2^{\aleph_0} .

Proof. Consider a partial flock of deficiency $< 2^{\aleph_0}$. Then there exist at least three lines of the cylinder, each of which is covered by the flock. Ellipses of the flock meet these lines in points

 $(x_1, y_1, t), (x_2, y_2, f(t)), (x_3, y_3, g(t))$

for $t \in \mathbb{R}$ where $f, g : \mathbb{R} \to \mathbb{R}$ are bijective and increasing, hence continuous. Now the ellipses of the flock must cover the entire cylinder.

4 D b 4 A b

over \mathbb{R} over \mathbb{Q}

Theorem

A partial flock of a real quadratic cone has deficiency 0 or 2^{\aleph_0} .

Proof. Consider a partial flock of deficiency $< 2^{\aleph_0}$. Then there exist at least three lines of the cylinder, each of which is covered by the flock. Ellipses of the flock meet these lines in points

 $(x_1, y_1, t), (x_2, y_2, f(t)), (x_3, y_3, g(t))$

for $t \in \mathbb{R}$ where $f, g : \mathbb{R} \to \mathbb{R}$ are bijective and increasing, hence continuous. Now the ellipses of the flock must cover the entire cylinder.

over \mathbb{R} over \mathbb{Q}

Theorem

A partial flock of a real quadratic cone has deficiency 0 or 2^{\aleph_0} .

Proof. Consider a partial flock of deficiency $< 2^{\aleph_0}$. Then there exist at least three lines of the cylinder, each of which is covered by the flock. Ellipses of the flock meet these lines in points

 $(x_1, y_1, t), (x_2, y_2, f(t)), (x_3, y_3, g(t))$

for $t \in \mathbb{R}$ where $f, g : \mathbb{R} \to \mathbb{R}$ are bijective and increasing, hence continuous. Now the ellipses of the flock must cover the entire cylinder.

Possible deficiencies of partial flocks over various fields F:

F	Cone	Elliptic	Hyperbolic	
\mathbb{F}_q	k(q+1)	2+ <i>k</i> (<i>q</i> +1)	k(q+1)	$0\leqslant k\leqslant q{+}arepsilon$ *
\mathbb{R}	0 or 2 ^{ℵ₀}	2 or 2^{\aleph_0}	0 or 2 ^{ℵ₀}	
Q	$\leqslant \aleph_0$	$\leqslant \aleph_0$	$\leqslant \aleph_0$	

(*) $\varepsilon = 0, -1, +1$ for cone, elliptic, hyperbolic quadric

イロト イロト イヨト イヨト

э

Possible deficiencies of partial flocks over various fields F:

F	Cone	Elliptic	Hyperbolic	
\mathbb{F}_q	k(q+1)	2+k(q+1)	<i>k</i> (<i>q</i> +1)	$0\leqslant k\leqslant q{+}arepsilon$ *
\mathbb{R}	0 or 2^{\aleph_0}	2 or 2^{\aleph_0}	0 or 2 ^{ℵ₀}	
Q	$\leqslant \aleph_0$	$\leqslant \aleph_0$	$\leqslant \aleph_0$	

(*) $\varepsilon = 0, -1, +1$ for cone, elliptic, hyperbolic quadric

イロト イロト イヨト イヨト

э

By induction as before:

Theorem

Let $Q \subset \mathbb{P}^3\mathbb{Q}$ be a nondegenerate quadric or quadratic cone defined over \mathbb{Q} , and let $B_1, \ldots, B_n \in Q$. Then there exists a partial flock of Q omitting precisely the points B_1, \ldots, B_n .

• 3 >

By induction as before:

Theorem

Let $Q \subset \mathbb{P}^3\mathbb{Q}$ be a nondegenerate quadric or quadratic cone defined over \mathbb{Q} , and let $B_1, \ldots, B_n \in Q$. Then there exists a partial flock of Q omitting precisely the points B_1, \ldots, B_n .

∃ >

By induction as before:

Theorem

Let $Q \subset \mathbb{P}^3\mathbb{Q}$ be a nondegenerate quadric or quadratic cone defined over \mathbb{Q} , and let $B_1, \ldots, B_n \in Q$. Then there exists a partial flock of Q omitting precisely the points B_1, \ldots, B_n .

By induction as before:

Theorem

Let $Q \subset \mathbb{P}^3\mathbb{Q}$ be a nondegenerate quadric or quadratic cone defined over \mathbb{Q} , and let $B_1, \ldots, B_n \in Q$. Then there exists a partial flock of Q omitting precisely the points B_1, \ldots, B_n .

4 D b 4 AP b

By induction as before:

Theorem

Let $Q \subset \mathbb{P}^3\mathbb{Q}$ be a nondegenerate quadric or quadratic cone defined over \mathbb{Q} , and let $B_1, \ldots, B_n \in Q$. Then there exists a partial flock of Q omitting precisely the points B_1, \ldots, B_n .

4 D b 4 A b

By induction as before:

Theorem

Let $Q \subset \mathbb{P}^3\mathbb{Q}$ be a nondegenerate quadric or quadratic cone defined over \mathbb{Q} , and let $B_1, \ldots, B_n \in Q$. Then there exists a partial flock of Q omitting precisely the points B_1, \ldots, B_n .

over \mathbb{R} over \mathbb{Q}

Theorem

Let $Q \subset \mathbb{P}^3\mathbb{Q}$ be a nondegenerate quadric or quadratic cone defined over \mathbb{Q} , and let $B_1, \ldots, B_n \in Q$. Then there exists a partial flock of Q omitting precisely the points B_1, \ldots, B_n .

We may replace \mathbb{Q} by any countable subfield of \mathbb{R} .

over O

Shown: a typical partial flock of a cone over $\mathbb Q$

In the preceding proof, ellipses had no *real* points in common.

Another argument is required to prove that finite partial flocks can be completed.

over \mathbb{R} over \mathbb{Q}

Shown: a typical partial flock of a cone over $\mathbb Q$

In the preceding proof, ellipses had no *real* points in common.

Another argument is required to prove that finite partial flocks can be completed.

over \mathbb{R} over \mathbb{Q}

Shown: a typical partial flock of a cone over $\mathbb Q$

In the preceding proof, ellipses had no *real* points in common.

Another argument is required to prove that finite partial flocks can be completed.

Let *p* be a prime. Define the *p*-adic norm of a rational number by

$$\|p^r \frac{a}{b}\|_p = p^{-r}$$

where $a, b, r \in \mathbb{Z}$ with $p \not\mid ab$; also

$$\|0\|_{p}=0.$$

This satisfies

- (i) $||x + y||_p \le \max\{||x||_p, ||y||_p\}$ with equality whenever $||x||_p \ne ||y||_p$; and
- (ii) $||xy||_{\rho} = ||x||_{\rho} ||y||_{\rho}$.

For every *nonzero* $x \in \mathbb{Q}$,

 $|x| \times ||x||_2 \times ||x||_3 \times ||x||_5 \times ||x||_7 \times ||x||_{11} \times \cdots = 1$

Let *p* be a prime. Define the *p*-adic norm of a rational number by

$$\|p^r \frac{a}{b}\|_p = p^{-r}$$

where $a, b, r \in \mathbb{Z}$ with $p \nmid ab$; also

$$\|\mathbf{0}\|_{p}=\mathbf{0}.$$

This satisfies

(i) $||x + y||_{\rho} \leq \max\{||x||_{\rho}, ||y||_{\rho}\}$ with equality whenever $||x||_{\rho} \neq ||y||_{\rho}$; and

(ii) $||xy||_{\rho} = ||x||_{\rho} ||y||_{\rho}$.

For every *nonzero* $x \in \mathbb{Q}$,

 $|x| \times ||x||_2 \times ||x||_3 \times ||x||_5 \times ||x||_7 \times ||x||_{11} \times \cdots = 1$

Let *p* be a prime. Define the *p*-adic norm of a rational number by

$$\|p^r \frac{a}{b}\|_p = p^{-r}$$

where $a, b, r \in \mathbb{Z}$ with $p \nmid ab$; also

$$\|\mathbf{0}\|_{p}=\mathbf{0}.$$

This satisfies

- (i) $||x + y||_{\rho} \leq \max\{||x||_{\rho}, ||y||_{\rho}\}$ with equality whenever $||x||_{\rho} \neq ||y||_{\rho}$; and
- (ii) $\|xy\|_{\rho} = \|x\|_{\rho}\|y\|_{\rho}$.

For every *nonzero* $x \in \mathbb{Q}$,

 $|x| \times ||x||_2 \times ||x||_3 \times ||x||_5 \times ||x||_7 \times ||x||_{11} \times \cdots = 1$

Let *p* be a prime. Define the *p*-adic norm of a rational number by

$$\|p^r \frac{a}{b}\|_p = p^{-r}$$

where $a, b, r \in \mathbb{Z}$ with $p \nmid ab$; also

$$\|\mathbf{0}\|_{p}=\mathbf{0}.$$

This satisfies

- (i) $||x + y||_{\rho} \leq \max\{||x||_{\rho}, ||y||_{\rho}\}$ with equality whenever $||x||_{\rho} \neq ||y||_{\rho}$; and
- (ii) $\|xy\|_{\rho} = \|x\|_{\rho} \|y\|_{\rho}$.

For every *nonzero* $x \in \mathbb{Q}$,

 $|x| \times \|x\|_2 \times \|x\|_3 \times \|x\|_5 \times \|x\|_7 \times \|x\|_{11} \times \cdots = 1$

(Partial) Spreads	
(Partial) Flocks	00
Caps and Ovoids	00

Lemma

Let C_1, \ldots, C_m be ellipses on the affine cylinder $X^2 + Y^2 = 1$ over \mathbb{Q} , and let $P \notin C_1 \cup C_2 \cup \cdots \cup C_m$ be a point of the cylinder. Then there exists an ellipse C on the cylinder containing P, and disjoint from each of the ellipses C_1, C_2, \ldots, C_m .

er

(Partial) Spreads	
(Partial) Flocks	OVE
Caps and Ovoids	0.06

Lemma

Let C_1, \ldots, C_m be ellipses on the affine cylinder $X^2 + Y^2 = 1$ over \mathbb{Q} , and let $P \notin C_1 \cup C_2 \cup \cdots \cup C_m$ be a point of the cylinder. Then there exists an ellipse C on the cylinder containing P, and disjoint from each of the ellipses C_1, C_2, \ldots, C_m .

Proof. WLOG P = (1, 0, 0) since the cylinder admits a point-transitive group of automorphisms

 $(x, y, z) \mapsto (ax+by, -bx+ay, z+c), a^2+b^2=1, a, b, c \in \mathbb{Q}.$

 $C_i : Z = \alpha_i X + \beta_i Y + \gamma_i, \ i = 1, 2, ..., m; \ \alpha_i, \beta_i, \gamma_i \in \mathbb{Q}; \ \alpha_i + \gamma_i \neq 0.$ $C : Z = \alpha(X-1) + \beta Y, \ \alpha, \beta \in \mathbb{Q} \text{ to be determined.}$

(Partial) Spreads	
(Partial) Flocks	OVE
Caps and Ovoids	0.06

Lemma

Let C_1, \ldots, C_m be ellipses on the affine cylinder $X^2 + Y^2 = 1$ over \mathbb{Q} , and let $P \notin C_1 \cup C_2 \cup \cdots \cup C_m$ be a point of the cylinder. Then there exists an ellipse C on the cylinder containing P, and disjoint from each of the ellipses C_1, C_2, \ldots, C_m .

Proof. WLOG P = (1, 0, 0) since the cylinder admits a point-transitive group of automorphisms

$$(x,y,z)\mapsto (ax+by,-bx+ay,z+c),\ a^2+b^2=1,\ a,b,c\in\mathbb{Q}$$

 $C_i : Z = \alpha_i X + \beta_i Y + \gamma_i, i = 1, 2, ..., m; \alpha_i, \beta_i, \gamma_i \in \mathbb{Q}; \alpha_i + \gamma_i \neq 0.$ $C : Z = \alpha(X-1) + \beta Y, \alpha, \beta \in \mathbb{Q} \text{ to be determined.}$

over O

Choose distinct primes $p_1, \ldots, p_m \equiv 3 \mod 4$ such that $\|\alpha_i + \gamma_i\|_{\mathcal{D}_i} = \mathbf{1}.$

$$\|\alpha - \alpha_i\|_{p_i} < 1, \quad \|\beta - \beta_i\|_{p_i} < 1$$

$$(\alpha - \alpha_i)X + (\beta - \beta_i)Y = \alpha + \gamma_i$$

$$\|\alpha+\gamma_i\|_{p_i}=\|(\alpha-\alpha_i)+(\alpha_i+\gamma_i)\|_{p_i}=1.$$

イロト イボト イヨト イヨ

Choose distinct primes $p_1, \ldots, p_m \equiv 3 \mod 4$ such that $\|\alpha_i + \gamma_i\|_{p_i} = 1$. By Weak Approximation, there exist $\alpha, \beta \in \mathbb{Q}$ such that

$$\|\alpha - \alpha_i\|_{p_i} < 1, \quad \|\beta - \beta_i\|_{p_i} < 1$$

for i = 1, 2, ..., m. The planes of C and C_i intersect in a line which satisfies

$$(\alpha - \alpha_i)X + (\beta - \beta_i)Y = \alpha + \gamma_i$$

where

$$\|\alpha+\gamma_i\|_{p_i}=\|(\alpha-\alpha_i)+(\alpha_i+\gamma_i)\|_{p_i}=1.$$

Any rational points (x, y) on this line must satisfy $||x||_{p_i} > 1$ or $||y||_{p_i} > 1$ and so $x^2 + y^2 \neq 1$.

• • • • • • • • • • • •

Choose distinct primes $p_1, \ldots, p_m \equiv 3 \mod 4$ such that $\|\alpha_i + \gamma_i\|_{p_i} = 1$.

By Weak Approximation, there exist $\alpha, \beta \in \mathbb{Q}$ such that

$$\|\alpha - \alpha_i\|_{p_i} < 1, \quad \|\beta - \beta_i\|_{p_i} < 1$$

for i = 1, 2, ..., m. The planes of C and C_i intersect in a line which satisfies

$$(\alpha - \alpha_i)X + (\beta - \beta_i)Y = \alpha + \gamma_i$$

where

$$\|\alpha+\gamma_i\|_{p_i}=\|(\alpha-\alpha_i)+(\alpha_i+\gamma_i)\|_{p_i}=1.$$

Any rational points (x, y) on this line must satisfy $||x||_{p_i} > 1$ or $||y||_{p_i} > 1$ and so $x^2 + y^2 \neq 1$.

・ロト ・ 日下・ ・ ヨト・

Choose distinct primes $p_1, \ldots, p_m \equiv 3 \mod 4$ such that $\|\alpha_i + \gamma_i\|_{p_i} = 1$. By Weak Approximation, there exist $\alpha, \beta \in \mathbb{O}$ such that

$$\|\alpha - \alpha_i\|_{\boldsymbol{p}_i} < 1, \quad \|\beta - \beta_i\|_{\boldsymbol{p}_i} < 1$$

for i = 1, 2, ..., m. The planes of C and C_i intersect in a line which satisfies

$$(\alpha - \alpha_i)X + (\beta - \beta_i)Y = \alpha + \gamma_i$$

where

$$\|\alpha+\gamma_i\|_{\boldsymbol{p}_i} = \|(\alpha-\alpha_i) + (\alpha_i+\gamma_i)\|_{\boldsymbol{p}_i} = 1.$$

Any rational points (x, y) on this line must satisfy $||x||_{p_i} > 1$ or $||y||_{p_i} > 1$ and so $x^2 + y^2 \neq 1$.

A D D A A A D D A A B D A

over \mathbb{R} over \mathbb{Q}

Lemma

Let C_1, \ldots, C_m be ellipses on the affine cylinder $X^2 + Y^2 = 1$ over \mathbb{Q} , and let $P \notin C_1 \cup C_2 \cup \cdots \cup C_m$ be a point of the cylinder. Then there exists an ellipse C on the cylinder containing P, and disjoint from each of the ellipses C_1, C_2, \ldots, C_m .

We may *also* prescribe points B_1, \ldots, B_n of the cylinder, and insist that C does not contain any of these.

Theorem

Let B_1, \ldots, B_n be distinct rational points on the cylinder $X^2 + Y^2 = 1$. Let C be a partial flock of the cylinder not covering any of the points B_i . Then C extends to a partial flock of the cylinder covering all points of the cylinder except B_1, \ldots, B_n .

Proof. Enumerate the rational points of the cylinder *other than* B_1, \ldots, B_n as P_0, P_1, P_2, \ldots . Using the Lemma we inductively define a sequence of partial flocks

$$\mathcal{C}_0{=}\mathcal{C}\subseteq\mathcal{C}_1\subseteq\mathcal{C}_2\subseteq\ldots$$

disjoint from $\{B_1, \ldots, B_n\}$ such that P_i is covered by C_j whenever i < j.

Theorem

Let B_1, \ldots, B_n be distinct rational points on the cylinder $X^2 + Y^2 = 1$. Let C be a partial flock of the cylinder not covering any of the points B_i . Then C extends to a partial flock of the cylinder covering all points of the cylinder except B_1, \ldots, B_n .

Proof. Enumerate the rational points of the cylinder *other than* B_1, \ldots, B_n as P_0, P_1, P_2, \ldots . Using the Lemma we inductively define a sequence of partial flocks

$$\mathcal{C}_0{=}\mathcal{C}\subseteq\mathcal{C}_1\subseteq\mathcal{C}_2\subseteq\ldots$$

disjoint from $\{B_1, \ldots, B_n\}$ such that P_i is covered by C_j whenever i < j.

Let \mathcal{P} be a classical polar space (e.g. a nondegenerate quadric in $\mathbb{P}^{n}F$).

A *cap* in \mathcal{P} is a set of points \mathcal{C} in \mathcal{P} , such that every generator (i.e. maximal projective subspace) $U \subset \mathcal{P}$ satisfies $|U \cap \mathcal{C}| \leq 1$.

An *ovoid* is a set of points \mathcal{O} in \mathcal{P} , such that every generator $U \subset \mathcal{P}$ satisfies $|U \cap \mathcal{O}| = 1$.

Theorem

Let \mathcal{P} be a classical polar space over an infinite field F. If \mathcal{C} is a cap in \mathcal{P} with $|\mathcal{C}| < |F|$, then \mathcal{C} extends to an ovoid of \mathcal{P} .

Let \mathcal{P} be a classical polar space (e.g. a nondegenerate quadric in $\mathbb{P}^{n}F$).

A *cap* in \mathcal{P} is a set of points \mathcal{C} in \mathcal{P} , such that every generator (i.e. maximal projective subspace) $U \subset \mathcal{P}$ satisfies $|U \cap \mathcal{C}| \leq 1$.

An *ovoid* is a set of points \mathcal{O} in \mathcal{P} , such that every generator $U \subset \mathcal{P}$ satisfies $|U \cap \mathcal{O}| = 1$.

Theorem

Let \mathcal{P} be a classical polar space over an infinite field F. If \mathcal{C} is a cap in \mathcal{P} with $|\mathcal{C}| < |F|$, then \mathcal{C} extends to an ovoid of \mathcal{P} .

Let \mathcal{P} be a classical polar space (e.g. a nondegenerate quadric in $\mathbb{P}^{n}F$).

A *cap* in \mathcal{P} is a set of points \mathcal{C} in \mathcal{P} , such that every generator (i.e. maximal projective subspace) $U \subset \mathcal{P}$ satisfies $|U \cap \mathcal{C}| \leq 1$.

An *ovoid* is a set of points \mathcal{O} in \mathcal{P} , such that every generator $U \subset \mathcal{P}$ satisfies $|U \cap \mathcal{O}| = 1$.

Theorem

Let \mathcal{P} be a classical polar space over an infinite field F. If C is a cap in \mathcal{P} with |C| < |F|, then C extends to an ovoid of \mathcal{P} .

Let \mathcal{P} be a classical polar space (e.g. a nondegenerate quadric in $\mathbb{P}^{n}F$).

A *cap* in \mathcal{P} is a set of points \mathcal{C} in \mathcal{P} , such that every generator (i.e. maximal projective subspace) $U \subset \mathcal{P}$ satisfies $|U \cap \mathcal{C}| \leq 1$.

An *ovoid* is a set of points \mathcal{O} in \mathcal{P} , such that every generator $U \subset \mathcal{P}$ satisfies $|U \cap \mathcal{O}| = 1$.

Theorem

Let \mathcal{P} be a classical polar space over an infinite field F. If \mathcal{C} is a cap in \mathcal{P} with $|\mathcal{C}| < |F|$, then \mathcal{C} extends to an ovoid of \mathcal{P} .

Image: A matrix and a matrix

Let \mathcal{P} be a classical polar space over an infinite field F. If \mathcal{C} is a cap in \mathcal{P} with $|\mathcal{C}| < |F|$, then \mathcal{C} extends to an ovoid of \mathcal{P} .

Proof.

Let $\gamma = |F|$, the smallest ordinal with $|\gamma| = |F|$. Enumerate the generators as $\{U_{\alpha}\}_{\alpha < \gamma}$. Inductively define a chain of caps \mathcal{O}_{β} for $\beta \leq \gamma$, with

 $\mathcal{O}_0 = \mathcal{C};$

 \mathcal{O}_{β} meets U_{α} whenever $\alpha < \beta$.

For limit ordinals $\beta \leqslant \gamma$, define $\mathcal{O}_{\beta} = \bigcup_{\alpha < \beta} \mathcal{O}_{\alpha}$.

For arbitrary $\beta < \gamma$, define

 $\mathcal{O}_{\beta+1} = \begin{cases} \mathcal{O}_{\beta}, & \text{if } \mathcal{O}_{\beta} \text{ meets } U_{\beta+1}; \\ \mathcal{O}_{\beta} \cup \{P\}, & \text{otherwise with } P \in U_{\beta+1} \smallsetminus \bigcup_{Q \in \mathcal{O}_{\beta}} Q^{\perp} \end{cases}$

Let \mathcal{P} be a classical polar space over an infinite field F. If \mathcal{C} is a cap in \mathcal{P} with $|\mathcal{C}| < |F|$, then \mathcal{C} extends to an ovoid of \mathcal{P} .

Proof.

Let $\gamma = |F|$, the smallest ordinal with $|\gamma| = |F|$. Enumerate the generators as $\{U_{\alpha}\}_{\alpha < \gamma}$. Inductively define a chain of caps \mathcal{O}_{β} for $\beta \leq \gamma$, with

 $\mathcal{O}_0 = \mathcal{C};$

 \mathcal{O}_{β} meets U_{α} whenever $\alpha < \beta$.

For limit ordinals $\beta \leqslant \gamma$, define $\mathcal{O}_{\beta} = \bigcup_{\alpha < \beta} \mathcal{O}_{\alpha}$.

For arbitrary $\beta < \gamma$, define

 $\mathcal{O}_{\beta+1} = \begin{cases} \mathcal{O}_{\beta}, & \text{if } \mathcal{O}_{\beta} \text{ meets } U_{\beta+1}; \\ \mathcal{O}_{\beta} \cup \{P\}, & \text{otherwise with } P \in U_{\beta+1} \smallsetminus \bigcup_{Q \in \mathcal{O}_{\beta}} Q^{\perp} \end{cases}$

Let \mathcal{P} be a classical polar space over an infinite field F. If \mathcal{C} is a cap in \mathcal{P} with $|\mathcal{C}| < |F|$, then \mathcal{C} extends to an ovoid of \mathcal{P} .

Proof.

Let $\gamma = |F|$, the smallest ordinal with $|\gamma| = |F|$. Enumerate the generators as $\{U_{\alpha}\}_{\alpha < \gamma}$. Inductively define a chain of caps \mathcal{O}_{β} for $\beta \leq \gamma$, with

 $\mathcal{O}_0 = \mathcal{C};$

 \mathcal{O}_{β} meets U_{α} whenever $\alpha < \beta$.

For limit ordinals $\beta \leqslant \gamma$, define $\mathcal{O}_{\beta} = \bigcup_{\alpha < \beta} \mathcal{O}_{\alpha}$. For arbitrary $\beta < \gamma$, define $\mathcal{O}_{\beta+1} = \begin{cases} \mathcal{O}_{\beta}, & \text{if } \mathcal{O}_{\beta} \text{ meets } U_{\beta+1}; \\ \mathcal{O}_{\beta} \cup \{P\}, & \text{otherwise with } P \in U_{\beta+1} \smallsetminus \bigcup_{Q \in \mathcal{O}_{\beta}} Q^{\perp} \end{cases}$

Let \mathcal{P} be a classical polar space over an infinite field F. If \mathcal{C} is a cap in \mathcal{P} with $|\mathcal{C}| < |F|$, then \mathcal{C} extends to an ovoid of \mathcal{P} .

Proof.

Let $\gamma = |F|$, the smallest ordinal with $|\gamma| = |F|$. Enumerate the generators as $\{U_{\alpha}\}_{\alpha < \gamma}$. Inductively define a chain of caps \mathcal{O}_{β} for $\beta \leqslant \gamma$, with

$$\mathcal{O}_0 = \mathcal{C};$$

 \mathcal{O}_{β} meets U_{α} whenever $\alpha < \beta$.

For limit ordinals $\beta \leqslant \gamma$, define $\mathcal{O}_{\beta} = \bigcup_{\alpha < \beta} \mathcal{O}_{\alpha}$.

For arbitrary $\beta < \gamma$, define

$$\mathcal{O}_{\beta+1} = \begin{cases} \mathcal{O}_{\beta}, & \text{if } \mathcal{O}_{\beta} \text{ meets } U_{\beta+1}; \\ \mathcal{O}_{\beta} \cup \{P\}, & \text{otherwise with } P \in U_{\beta+1} \smallsetminus \bigcup_{Q \in \mathcal{O}_{\beta}} Q^{\perp}. \end{cases}$$