Partial Spreads and Flocks over Infinite Fields

G. Eric Moorhouse

Department of Mathematics University of Wyoming

|| · ||Fest 2009

重

K ロ ト K 伺 ト K 手

 \mathbf{p} \leftarrow \mathbb{R} is

A spread is a set of mutually skew lines which partitions the points (i.e. deficiency=0).

A dual spread is a set Σ of mutually skew lines such that every plane contains a unique $\ell \in \Sigma$. (For $|F| < \infty$, a spread is the same as a dual spread.)

A bispread is a spread which is also a dual spread.

Spread of $\mathbb{P}^3 F \leftrightarrow$ Translation plane of dimension 2 over F

 4 **D** \rightarrow 4 \overline{m} \rightarrow 4 \overline{m} \rightarrow

A spread is a set of mutually skew lines which partitions the points (i.e. deficiency=0).

A dual spread is a set Σ of mutually skew lines such that every plane contains a unique $\ell \in \Sigma$. (For $|F| < \infty$, a spread is the same as a dual spread.)

A bispread is a spread which is also a dual spread.

Spread of $\mathbb{P}^3 F \leftrightarrow$ Translation plane of dimension 2 over F

 4 **D** \rightarrow 4 \overline{m} \rightarrow 4 \overline{m} \rightarrow

A spread is a set of mutually skew lines which partitions the points (i.e. deficiency=0).

A dual spread is a set Σ of mutually skew lines such that every plane contains a unique $\ell \in \Sigma$. (For $|F| < \infty$, a spread is the same as a dual spread.)

A bispread is a spread which is also a dual spread.

Spread of $\mathbb{P}^3 F \leftrightarrow$ Translation plane of dimension 2 over F

K ロ ト K 伺 ト K 手

A spread is a set of mutually skew lines which partitions the points (i.e. deficiency=0).

A dual spread is a set Σ of mutually skew lines such that every plane contains a unique $\ell \in \Sigma$. (For $|F| < \infty$, a spread is the same as a dual spread.)

A bispread is a spread which is also a dual spread.

Spread of $\mathbb{P}^3 F \leftrightarrow$ Translation plane of dimension 2 over F

4 ロト 4 何 ト 4

A spread is a set of mutually skew lines which partitions the points (i.e. deficiency=0).

A dual spread is a set Σ of mutually skew lines such that every plane contains a unique $\ell \in \Sigma$. (For $|F| < \infty$, a spread is the same as a dual spread.)

A bispread is a spread which is also a dual spread.

Spread of \mathbb{P}^3 F \leftrightarrow Translation plane of dimension 2 over F

Ξ

4 ロト 4 何 ト 4

A spread is a set of mutually skew lines which partitions the points (i.e. deficiency=0).

Possible deficiencies of partial spreads over various fields F:

É

A spread is a set of mutually skew lines which partitions the points (i.e. deficiency=0).

Possible deficiencies of partial spreads over various fields F :

A spread is a set of mutually skew lines which partitions the points (i.e. deficiency=0).

Possible deficiencies of partial spreads over various fields F :

over Q over R

Theorem

If $B = \{B_1, \ldots, B_n\}$ are distinct points of $\mathbb{P}^3 \mathbb{Q}$, then there exists a partial spread of $\mathbb{P}^3\mathbb{Q}$ of deficiency n omitting precisely the points of B.

Proof. Enumerate the points of $\mathbb{P}^3\mathbb{Q}\setminus\mathcal{B}$ as P_0, P_1, P_2, \ldots Inductively define a chain of partial spreads

 $\Sigma_0 \subset \Sigma_1 \subset \Sigma_2 \subset \cdots$

such that $P_i \in \bigcup \Sigma_j$ whenever $i < j;$ and the partial spread $\Sigma = \bigcup_{j \geqslant 0} \Sigma_j$ satisfies $\bigcup \Sigma = \mathbb{P}^3 \mathbb{Q} \smallsetminus \mathcal{B}.$ Define $\Sigma_0 = \varnothing$ and $\Sigma_{j+1} =$ \int Σ_j , if $P_j \in \bigcup \Sigma_j$; $\Sigma_j\cup\{\ell\}, \quad$ if $P_j\notin \bigcup \Sigma_j;$ line $\ell\ni P_j$ disjoint from $\mathcal{B}\cup (\bigcup \Sigma_j)$

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

over Q over R

Theorem

If $B = \{B_1, \ldots, B_n\}$ are distinct points of $\mathbb{P}^3 \mathbb{Q}$, then there exists a partial spread of $\mathbb{P}^3\mathbb{Q}$ of deficiency n omitting precisely the points of B.

Proof. Enumerate the points of $\mathbb{P}^3\mathbb{Q}\setminus\mathcal{B}$ as P_0, P_1, P_2, \ldots Inductively define a chain of partial spreads

 $\Sigma_0 \subset \Sigma_1 \subset \Sigma_2 \subset \cdots$

such that $P_i \in \bigcup \Sigma_j$ whenever $i < j;$ and the partial spread $\Sigma = \bigcup_{j \geqslant 0} \Sigma_j$ satisfies $\bigcup \Sigma = \mathbb{P}^3 \mathbb{Q} \smallsetminus \mathcal{B}.$ Define $\Sigma_0 = \varnothing$ and $\Sigma_{j+1} =$ \int Σ_j , if $P_j \in \bigcup \Sigma_j$; $\Sigma_j\cup\{\ell\}, \quad$ if $P_j\notin \bigcup \Sigma_j;$ line $\ell\ni P_j$ disjoint from $\mathcal{B}\cup (\bigcup \Sigma_j)$

 $(1 + 4)$ $(1 + 4)$

over Q over R

Theorem

If $B = \{B_1, \ldots, B_n\}$ are distinct points of $\mathbb{P}^3 \mathbb{Q}$, then there exists a partial spread of $\mathbb{P}^3\mathbb{Q}$ of deficiency n omitting precisely the points of B.

Proof. Enumerate the points of $\mathbb{P}^3\mathbb{Q}\setminus\mathcal{B}$ as P_0, P_1, P_2, \ldots Inductively define a chain of partial spreads

$$
\Sigma_0 \subseteq \Sigma_1 \subseteq \Sigma_2 \subseteq \cdots
$$

such that $P_i \in \bigcup \Sigma_j$ whenever $i < j;$ and the partial spread $\Sigma=\bigcup_{j\geqslant 0}\Sigma_j$ satisfies $\bigcup\Sigma=\mathbb{P}^3\mathbb{Q}\smallsetminus\mathcal{B}.$ Define $\Sigma_0=\varnothing$ and $\Sigma_{j+1} =$ \int Σ_j , if $P_j \in \bigcup \Sigma_j$; $\Sigma_j\cup\{\ell\}, \quad$ if $P_j\notin \bigcup \Sigma_j;$ line $\ell\ni P_j$ disjoint from $\mathcal{B}\cup (\bigcup \Sigma_j)$

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

over Q over R

Theorem

If $B = \{B_1, \ldots, B_n\}$ are distinct points of $\mathbb{P}^3 \mathbb{Q}$, then there exists a partial spread of $\mathbb{P}^3\mathbb{Q}$ of deficiency n omitting precisely the points of B.

Proof. Enumerate the points of $\mathbb{P}^3\mathbb{Q}\setminus\mathcal{B}$ as P_0, P_1, P_2, \ldots Inductively define a chain of partial spreads

$$
\Sigma_0 \subseteq \Sigma_1 \subseteq \Sigma_2 \subseteq \cdots
$$

such that $P_i \in \bigcup \Sigma_j$ whenever $i < j;$ and the partial spread $\Sigma = \bigcup_{j \geqslant 0} \Sigma_j$ satisfies $\bigcup \Sigma = \mathbb{P}^3 \mathbb{Q} \smallsetminus \mathcal{B}$. Define $\Sigma_0 = \varnothing$ and $\Sigma_{j+1} =$ \int Σ_j , if $P_j \in \bigcup \Sigma_j$; $\Sigma_j\cup\{\ell\}, \quad \text{if } P_j\notin \bigcup \Sigma_j; \text{ line }\ell \ni P_j \text{ disjoint from } \mathcal{B}\cup (\bigcup \Sigma_j),$

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶

 Ω

over Q over R

Theorem

If $B = \{B_1, \ldots, B_n\}$ are distinct points of $\mathbb{P}^3 \mathbb{Q}$, then there exists a partial spread of $\mathbb{P}^3\mathbb{Q}$ of deficiency n omitting precisely the points of B.

Improvement, also by induction:

Theorem

Every finite partial spread of $\mathbb{P}^3\mathbb{Q}$ can be completed to a spread.

Moreover if $\Sigma = \{ \ell_1, \ldots, \ell_m \}$ is a partial spread and $\mathcal{B} = \{\boldsymbol{B_1}, \boldsymbol{B_2}, \dots, \boldsymbol{B_n}\}$ are distinct points not in $\bigcup \Sigma$, then Σ may be extended to a partial spread of deficiency n omitting precisely the points of B.

イロト イ押ト イヨト イヨト

重

つQで

A similar result holds for real projective 3-space, by transfinite induction:

Theorem

Every partial spread Σ of $\mathbb{P}^3\mathbb{R}$ of cardinality $|\Sigma| < 2^{\aleph_0}$ can be completed to a spread.

Moreover if $\mathcal{B} \subset \mathbb{P}^3\mathbb{R}$ is a point set of cardinality $|\mathcal{B}| < 2^{\aleph_0}$ disjoint from $\bigcup \Sigma$, then Σ may be extended to a partial spread omitting precisely the points of $\mathcal B$ (deficiency = $|\mathcal B|$).

In particular $\mathbb{R}^3\smallsetminus\{O\}$ can be partitioned into lines. Is there a direct way to show this (without transfinite induction)?

4 ロ ト 4 何 ト 4 手

A similar result holds for real projective 3-space, by transfinite induction:

Theorem

Every partial spread Σ of $\mathbb{P}^3\mathbb{R}$ of cardinality $|\Sigma| < 2^{\aleph_0}$ can be completed to a spread.

Moreover if $\mathcal{B} \subset \mathbb{P}^3\mathbb{R}$ is a point set of cardinality $|\mathcal{B}| < 2^{\aleph_0}$ disjoint from $\bigcup \Sigma$, then Σ may be extended to a partial spread omitting precisely the points of B (deficiency = $|B|$).

In particular $\mathbb{R}^3\smallsetminus\{O\}$ can be partitioned into lines. Is there a direct way to show this (without transfinite induction)?

舌

K ロ ト K 伺 ト K 手

A similar result holds for real projective 3-space, by transfinite induction:

Theorem

Every partial spread Σ of $\mathbb{P}^3\mathbb{R}$ of cardinality $|\Sigma| < 2^{\aleph_0}$ can be completed to a spread.

Moreover if $\mathcal{B} \subset \mathbb{P}^3\mathbb{R}$ is a point set of cardinality $|\mathcal{B}| < 2^{\aleph_0}$ disjoint from $\bigcup \Sigma$, then Σ may be extended to a partial spread omitting precisely the points of B (deficiency = $|B|$).

In particular $\mathbb{R}^3\smallsetminus\{O\}$ can be partitioned into lines. Is there a direct way to show this (without transfinite induction)?

舌

K ロ ト K 伺 ト K ヨ ト

over $\mathbb R$ over Q

Quadratic Cones

 (W, X, Y, Z) such that $\alpha X^2 + \beta XY + \gamma Y^2 = W^2$ irreducible

Affine description:

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

over $\mathbb R$ over $\mathbb O$

Quadratic Cones

 $(\pmb{W}, \pmb{X}, \pmb{Y}, \pmb{Z})$ such that $\alpha X^2 + \beta XY + \gamma Y^2 = W^2$ irreducible

description:

 (X, Y, Z) such that $\alpha X^2 + \beta XY + \gamma Y^2 = 1$ irreducible

(□) (包) (

重

Affine

over R over $\mathbb O$

Flocks

A partial flock of the cone is a collection of mutually disjoint conics (plane sections) of the cylinder (i.e. the cone minus its vertex).

The **deficiency** of a partial flock is the number of points of the cylinder not covered.

A flock of the cone is a partition of the points of the cylinder into conics (deficiency=0).

over R over Ω

Flocks

A partial flock of the cone

is a collection of mutually disjoint conics (plane sections) of the cylinder (i.e. the cone minus its vertex).

The **deficiency** of a partial flock is the number of points of the cylinder not covered.

A flock of the cone is a partition of the points of the cylinder into conics (deficiency=0).

over R over Ω

Flocks

A partial flock of the cone is a collection of mutually disjoint conics (plane

sections) of the cylinder (i.e. the cone minus its vertex).

The **deficiency** of a partial flock is the number of points of the cylinder not covered.

A flock of the cone is a partition of the points of the cylinder into conics (deficiency=0).

Possible deficiencies of partial flocks over various fields F:

(*) $\varepsilon = 0, -1, +1$ for cone, elliptic, hyperbolic quadric

メロトメ 倒 トメ ミトメ ミト

Possible deficiencies of partial flocks over various fields F:

(*) $\varepsilon = 0, -1, +1$ for cone, elliptic, hyperbolic quadric

メロトメ 倒 トメ ミトメ ミト

over **R** over $\mathbb O$

Theorem

A partial flock of a real quadratic cone has deficiency 0 or 2^{\aleph_0} .

Proof. Consider a partial flock of deficiency $<$ 2^{$\&$}°. Then there exist at least three lines of the cylinder, each of which is covered $(x_1, y_1,$ by the flock. Ellipses of the flock meet these lines in points

É Ω

 $(x_1, y_1, t), (x_2, y_2, f(t)), (x_3, y_3, g(t))$

for $t \in \mathbb{R}$ where $f, g : \mathbb{R} \to \mathbb{R}$ are bijective and increasing, hence continuous. Now the ellipses of the flock must cover the entire cylinder.

4 ロ ト ィ *ロ* ト ィ

over R over $\mathbb O$

Theorem

A partial flock of a real quadratic cone has deficiency 0 or 2^{\aleph_0} .

Proof. Consider a partial flock of deficiency $<$ 2^{\aleph_0}. Then there exist at least three lines of the cylinder, each of which is covered $(x_1, y_1,$ by the flock. Ellipses of the flock meet these lines in points

 $(x_1, y_1, t), (x_2, y_2, f(t)), (x_3, y_3, g(t))$

for $t \in \mathbb{R}$ where $f, g : \mathbb{R} \to \mathbb{R}$ are bijective and increasing, hence continuous. Now the ellipses of the flock must cover the entire cylinder.

É

4 ロト 4 何 ト 4

over R over Ω

Theorem

A partial flock of a real quadratic cone has deficiency 0 or 2^{\aleph_0} .

Proof. Consider a partial flock of deficiency $<$ 2^{\aleph_0}. Then there exist at least three lines of the cylinder, each of which is covered $(x_1, y_1,$ by the flock. Ellipses of the flock meet these lines in points

É つQで

 $(x_1, y_1, t), (x_2, y_2, f(t)), (x_3, y_3, g(t))$

for $t \in \mathbb{R}$ where $f, g : \mathbb{R} \to \mathbb{R}$ are bijective and increasing, hence **continuous.** Now the ellipses of the flock must cover the entire cylinder.

 $($ \Box $)$ $($ \overline{A} $)$

over R over Ω

Theorem

A partial flock of a real quadratic cone has deficiency 0 or 2^{\aleph_0} .

Proof. Consider a partial flock of deficiency $<$ 2^{\aleph_0}. Then there exist at least three lines of the cylinder, each of which is covered $(x_1, y_1,$ by the flock. Ellipses of the flock meet these lines in points

€ つQC

 $(x_1, y_1, t), (x_2, y_2, f(t)), (x_3, y_3, g(t))$

for $t \in \mathbb{R}$ where $f, g : \mathbb{R} \to \mathbb{R}$ are bijective and increasing, hence continuous. Now the ellipses of the flock must cover the entire cylinder.

Possible deficiencies of partial flocks over various fields F:

(*) $\varepsilon = 0, -1, +1$ for cone, elliptic, hyperbolic quadric

メロトメ 倒 トメ ミトメ ミト

Possible deficiencies of partial flocks over various fields F:

(*) $\varepsilon = 0, -1, +1$ for cone, elliptic, hyperbolic quadric

メロトメ 倒 トメ ミトメ ミト

By induction as before:

Theorem

Let $\mathcal{Q} \subset \mathbb{P}^3\mathbb{Q}$ be a nondegenerate quadric or quadratic cone defined over $\mathbb Q$, and let $B_1, \ldots, B_n \in \mathcal Q$. Then there exists a partial flock of Q omitting precisely the points B_1, \ldots, B_n .

 \rightarrow \equiv \rightarrow

By induction as before:

Theorem

Let $\mathcal{Q} \subset \mathbb{P}^3\mathbb{Q}$ be a nondegenerate quadric or quadratic cone defined over $\mathbb Q$, and let $B_1, \ldots, B_n \in \mathcal Q$. Then there exists a partial flock of Q omitting precisely the points B_1, \ldots, B_n .

By induction as before:

Theorem

Let $\mathcal{Q} \subset \mathbb{P}^3\mathbb{Q}$ be a nondegenerate quadric or quadratic cone defined over $\mathbb Q$, and let $B_1, \ldots, B_n \in \mathcal Q$. Then there exists a partial flock of Q omitting precisely the points B_1, \ldots, B_n .

E

By induction as before:

Theorem

Let $\mathcal{Q} \subset \mathbb{P}^3\mathbb{Q}$ be a nondegenerate quadric or quadratic cone defined over $\mathbb Q$, and let $B_1, \ldots, B_n \in \mathcal Q$. Then there exists a partial flock of Q omitting precisely the points B_1, \ldots, B_n .

E

(□) (包) (

By induction as before:

Theorem

Let $\mathcal{Q} \subset \mathbb{P}^3\mathbb{Q}$ be a nondegenerate quadric or quadratic cone defined over $\mathbb Q$, and let $B_1, \ldots, B_n \in \mathcal Q$. Then there exists a partial flock of Q omitting precisely the points B_1, \ldots, B_n .

E

4 ロト 4 何 ト 4

By induction as before:

Theorem

Let $\mathcal{Q} \subset \mathbb{P}^3\mathbb{Q}$ be a nondegenerate quadric or quadratic cone defined over $\mathbb Q$, and let $B_1, \ldots, B_n \in \mathcal Q$. Then there exists a partial flock of Q omitting precisely the points B_1, \ldots, B_n .

E

4 ロ ト 4 *同* ト 4

over R over Q

Theorem

Let $\mathcal{Q} \subset \mathbb{P}^3\mathbb{Q}$ be a nondegenerate quadric or quadratic cone defined over $\mathbb Q$, and let $B_1, \ldots, B_n \in \mathcal Q$. Then there exists a partial flock of Q omitting precisely the points B_1, \ldots, B_n .

We may replace $\mathbb Q$ by any countable subfield of $\mathbb R$.

重

over R over Q

Shown: a typical partial flock of a cone over $\mathbb O$

In the preceding proof, ellipses had no real points in common.

Another argument is required to prove that finite partial flocks can be completed.

> 4 ロ) 4 *同* \rightarrow

É

over R over Q

Shown: a typical partial flock of a cone over $\mathbb O$

In the preceding proof, ellipses had no real points in common.

Another argument is required to prove that finite partial flocks can be completed.

4 ロ) - 4 *F*D

E

over R over Q

Shown: a typical partial flock of a cone over $\mathbb O$

In the preceding proof, ellipses had no real points in common.

Another argument is required to prove that finite partial flocks can be completed.

É

4 0 8

Let p be a prime. Define the p -adic norm of a rational number by

$$
\|p^r\textstyle{\frac{a}{b}}\|_p=p^{-r}
$$

where $\bm{a},\bm{b},\bm{r}\in\mathbb{Z}$ with $\bm{p}\nmid \bm{ab};$ also

$$
\|0\|_\rho=0.
$$

This satisfies

- (i) $||x + y||_p \le \max{||x||_p, ||y||_p}$ with equality whenever $||x||_p \neq ||y||_p$; and
- (ii) $||xy||_p = ||x||_p ||y||_p$.

For every *nonzero* $x \in \mathbb{Q}$,

 $||x|| \times ||x||_2 \times ||x||_3 \times ||x||_5 \times ||x||_7 \times ||x||_{11} \times \cdots = 1$

where all but finitely many factors are 1.

 $(0,1)$ $(0,1)$

E

Let p be a prime. Define the p -adic norm of a rational number by

$$
\|p^r\textstyle{\frac{a}{b}}\|_p=p^{-r}
$$

where $\bm{a},\bm{b},\bm{r}\in\mathbb{Z}$ with $\bm{p}\nmid \bm{ab};$ also

$$
\|0\|_\rho=0.
$$

This satisfies

(i) $||x + y||_p \leq \max{||x||_p, ||y||_p}$ with equality whenever $||x||_p \neq ||y||_p$; and

(ii) $||xy||_p = ||x||_p ||y||_p$.

For every nonzero $x \in \mathbb{Q}$,

 $||x|| \times ||x||_2 \times ||x||_3 \times ||x||_5 \times ||x||_7 \times ||x||_{11} \times \cdots = 1$

where all but finitely many factors are 1.

K ロ ト K 伺 ト K ヨ ト K ヨ ト

E

Let p be a prime. Define the p -adic norm of a rational number by

$$
\|p^r\textstyle{\frac{a}{b}}\|_p=p^{-r}
$$

where $\bm{a},\bm{b},\bm{r}\in\mathbb{Z}$ with $\bm{p}\nmid \bm{ab};$ also

$$
\|0\|_\rho=0.
$$

This satisfies

- (i) $||x + y||_p \leq \max{||x||_p, ||y||_p}$ with equality whenever $||x||_p \neq ||y||_p$; and
- (ii) $||xy||_p = ||x||_p ||y||_p$.

For every *nonzero* $x \in \mathbb{Q}$,

 $||x|| \times ||x||_2 \times ||x||_3 \times ||x||_5 \times ||x||_7 \times ||x||_{11} \times \cdots = 1$

where all but finitely many factors are 1.

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

重

 Ω

Let ρ be a prime. Define the ρ -adic norm of a rational number by

$$
\|p^r\textstyle{\frac{a}{b}}\|_p=p^{-r}
$$

where $\bm{a},\bm{b},\bm{r}\in\mathbb{Z}$ with $\bm{p}\nmid \bm{ab};$ also

$$
\|0\|_\rho=0.
$$

This satisfies

- (i) $||x + y||_p \leq \max\{||x||_p, ||y||_p\}$ with equality whenever $||x||_p \neq ||y||_p$; and
- (ii) $||xy||_p = ||x||_p ||y||_p$.

For every *nonzero* $x \in \mathbb{Q}$,

 $|x| \times ||x||_2 \times ||x||_3 \times ||x||_5 \times ||x||_7 \times ||x||_{11} \times \cdots = 1$

where all but finitely many factors are 1.

Kロメ (例) (注

Lemma

Let C_1, \ldots, C_m be ellipses on the affine cylinder $X^2 + Y^2 = 1$ over \mathbb{Q} , and let $P \notin C_1 \cup C_2 \cup \cdots \cup C_m$ be a point of the cylinder. Then there exists an ellipse C on the cylinder containing P, and disjoint from each of the ellipses C_1, C_2, \ldots, C_m .

Lemma

Let C_1, \ldots, C_m be ellipses on the affine cylinder $X^2 + Y^2 = 1$ over \mathbb{O} , and let $P \notin C_1 \cup C_2 \cup \cdots \cup C_m$ be a point of the cylinder. Then there exists an ellipse C on the cylinder containing P, and disjoint from each of the ellipses C_1, C_2, \ldots, C_m .

 $er ①$

Proof. WLOG $P = (1, 0, 0)$ since the cylinder admits a point-transitive group of automorphisms

$$
(x, y, z) \mapsto (ax+by, -bx+ay, z+c), a^2+b^2=1, a, b, c \in \mathbb{Q}.
$$

 C_i : $Z = \alpha_i X + \beta_i Y + \gamma_i$, $i=1,2,\ldots,m$; $\alpha_i, \beta_i, \gamma_i \in \mathbb{Q}$; $\alpha_i + \gamma_i \neq 0$. $C: Z=\alpha(X-1)+\beta Y, \alpha, \beta \in \mathbb{Q}$ to be determined.

E

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Lemma

Let C_1, \ldots, C_m be ellipses on the affine cylinder $X^2 + Y^2 = 1$ over \mathbb{O} , and let $P \notin C_1 \cup C_2 \cup \cdots \cup C_m$ be a point of the cylinder. Then there exists an ellipse C on the cylinder containing P, and disjoint from each of the ellipses C_1, C_2, \ldots, C_m .

er $\mathbb R$ $er ①$

Proof. WLOG $P = (1, 0, 0)$ since the cylinder admits a point-transitive group of automorphisms

$$
(x, y, z) \mapsto (ax+by, -bx+ay, z+c), a^2+b^2=1, a, b, c \in \mathbb{Q}.
$$

$$
C_i: Z = \alpha_i X + \beta_i Y + \gamma_i, i = 1, 2, ..., m; \alpha_i, \beta_i, \gamma_i \in \mathbb{Q}; \alpha_i + \gamma_i \neq 0.
$$

$$
C: Z = \alpha(X-1) + \beta Y, \alpha, \beta \in \mathbb{Q} \text{ to be determined.}
$$

Choose distinct primes $p_1, \ldots, p_m \equiv 3 \mod 4$ such that $\|\alpha_i + \gamma_i\|_{p_i} = 1.$

By Weak Approximation, there exist $\alpha, \beta \in \mathbb{Q}$ such that

$$
\|\alpha-\alpha_i\|_{p_i}<1,\quad \|\beta-\beta_i\|_{p_i}<1
$$

for $i=1,2,\ldots,m.$ The planes of $\mathcal C$ and $\mathcal C_i$ intersect in a line which satisfies

$$
(\alpha-\alpha_i)X+(\beta-\beta_i)Y=\alpha+\gamma_i
$$

where

$$
\|\alpha+\gamma_i\|_{p_i}=\|(\alpha-\alpha_i)+(\alpha_i+\gamma_i)\|_{p_i}=1.
$$

Any rational points (x, y) on this line must satisfy $||x||_{p_i} > 1$ or $||y||_{p_i} > 1$ and so $x^2+y^2 \neq 1$.

重

 $A \cap A \rightarrow A \cap A \rightarrow A \Rightarrow A \Rightarrow A \Rightarrow B \Rightarrow A \Rightarrow B$

Choose distinct primes $p_1, \ldots, p_m \equiv 3 \mod 4$ such that $\|\alpha_i + \gamma_i\|_{p_i} = 1.$ By Weak Approximation, there exist $\alpha, \beta \in \mathbb{Q}$ such that

$$
\|\alpha-\alpha_i\|_{p_i}<1,\quad \|\beta-\beta_i\|_{p_i}<1
$$

for $i=1,2,\ldots,m.$ The planes of $\mathcal C$ and $\mathcal C_i$ intersect in a line which satisfies

$$
(\alpha-\alpha_i)X+(\beta-\beta_i)Y=\alpha+\gamma_i
$$

where

$$
\|\alpha+\gamma_i\|_{p_i}=\|(\alpha-\alpha_i)+(\alpha_i+\gamma_i)\|_{p_i}=1.
$$

Any rational points (x, y) on this line must satisfy $||x||_{p_i} > 1$ or $||y||_{p_i} > 1$ and so $x^2+y^2 \neq 1$.

E

 4 **D** \rightarrow 4 \overline{m} \rightarrow 4 \overline{m} \rightarrow

Choose distinct primes $p_1, \ldots, p_m \equiv 3 \mod 4$ such that $\|\alpha_i + \gamma_i\|_{p_i} = 1.$

By Weak Approximation, there exist $\alpha, \beta \in \mathbb{Q}$ such that

$$
\|\alpha-\alpha_i\|_{p_i}<1,\quad \|\beta-\beta_i\|_{p_i}<1
$$

for $i=1,2,\ldots,m.$ The planes of ${\cal C}$ and ${\cal C}_i$ intersect in a line which satisfies

$$
(\alpha\!-\!\alpha_i)\pmb{X}+(\beta\!-\!\beta_i)\pmb{Y}=\alpha\!+\!\gamma_i
$$

where

$$
\|\alpha+\gamma_i\|_{p_i}=\|(\alpha-\alpha_i)+(\alpha_i+\gamma_i)\|_{p_i}=1.
$$

Any rational points (x, y) on this line must satisfy $||x||_{p_i} > 1$ or $||y||_{p_i} > 1$ and so $x^2+y^2 \neq 1$.

E

 $A \cap A \rightarrow A \cap A \rightarrow A \Rightarrow A \Rightarrow A \Rightarrow B \Rightarrow A \Rightarrow B$

Choose distinct primes $p_1, \ldots, p_m \equiv 3 \mod 4$ such that $\|\alpha_i + \gamma_i\|_{p_i} = 1.$

By Weak Approximation, there exist $\alpha, \beta \in \mathbb{Q}$ such that

$$
\|\alpha-\alpha_i\|_{p_i}<1,\quad \|\beta-\beta_i\|_{p_i}<1
$$

for $i=1,2,\ldots,m.$ The planes of ${\cal C}$ and ${\cal C}_i$ intersect in a line which satisfies

$$
(\alpha-\alpha_i)X+(\beta-\beta_i)Y=\alpha+\gamma_i
$$

where

$$
\|\alpha+\gamma_i\|_{p_i}=\|(\alpha-\alpha_i)+(\alpha_i+\gamma_i)\|_{p_i}=1.
$$

Any rational points (x, y) on this line must satisfy $||x||_{p_i} > 1$ or $||y||_{p_i} > 1$ and so $x^2+y^2 \neq 1$.

イロト イ母 トイヨ トイヨ

E

over R over Q

Lemma

Let C_1, \ldots, C_m be ellipses on the affine cylinder $X^2 + Y^2 = 1$ over \mathbb{Q} , and let $P \notin C_1 \cup C_2 \cup \cdots \cup C_m$ be a point of the cylinder. Then there exists an ellipse C on the cylinder containing P, and disjoint from each of the ellipses C_1, C_2, \ldots, C_m .

We may also prescribe points B_1, \ldots, B_n of the cylinder, and insist that C does not contain any of these.

Theorem

Let B_1, \ldots, B_n be distinct rational points on the cylinder $X^2+Y^2=1$. Let ${\cal C}$ be a partial flock of the cylinder not covering any of the points B_i . Then $\mathcal C$ extends to a partial flock of the cylinder covering all points of the cylinder except B_1, \ldots, B_n .

Proof. Enumerate the rational points of the cylinder other than B_1, \ldots, B_n as P_0, P_1, P_2, \ldots Using the Lemma we inductively define a sequence of partial flocks

$$
\mathcal{C}_0{=}\mathcal{C}\subseteq\mathcal{C}_1\subseteq\mathcal{C}_2\subseteq\dots
$$

disjoint from $\{B_1,\ldots,B_n\}$ such that P_i is covered by \mathcal{C}_j whenever $i < i$.

 $A \cup B \cup A \cup B \cup A \cup B \cup A \cup B \cup B$

Theorem

Let B_1, \ldots, B_n be distinct rational points on the cylinder $X^2+Y^2=1$. Let ${\cal C}$ be a partial flock of the cylinder not covering any of the points B_i . Then $\mathcal C$ extends to a partial flock of the cylinder covering all points of the cylinder except B_1, \ldots, B_n .

Proof. Enumerate the rational points of the cylinder other than B_1, \ldots, B_n as P_0, P_1, P_2, \ldots Using the Lemma we inductively define a sequence of partial flocks

$$
\mathcal{C}_0{=}\mathcal{C}\subseteq\mathcal{C}_1\subseteq\mathcal{C}_2\subseteq\dots
$$

disjoint from $\{B_1,\ldots,B_n\}$ such that P_i is covered by \mathcal{C}_j whenever $i < j$.

 4 **D** \rightarrow 4 \overline{m} \rightarrow 4 \overline{m} \rightarrow

A cap in $\mathcal P$ is a set of points $\mathcal C$ in $\mathcal P$, such that every generator (i.e. maximal projective subspace) $U \subset \mathcal{P}$ satisfies $|U \cap \mathcal{C}| \leq 1$.

An ovoid is a set of points $\mathcal O$ in $\mathcal P$, such that every generator $U \subset \mathcal{P}$ satisfies $|U \cap \mathcal{O}| = 1$.

Let P be a classical polar space over an infinite field F. If C is a cap in P with $|\mathcal{C}| < |F|$, then C extends to an ovoid of P.

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ

A cap in P is a set of points C in P , such that every generator (i.e. maximal projective subspace) $U \subset \mathcal{P}$ satisfies $|U \cap \mathcal{C}| \leq 1$.

An ovoid is a set of points $\mathcal O$ in $\mathcal P$, such that every generator $U \subset \mathcal{P}$ satisfies $|U \cap \mathcal{O}| = 1$.

Let P be a classical polar space over an infinite field F. If C is a cap in P with $|\mathcal{C}| < |F|$, then C extends to an ovoid of P.

4 ロ ト 4 母 ト 4 ヨ ト

A cap in P is a set of points C in P , such that every generator (i.e. maximal projective subspace) $U \subset \mathcal{P}$ satisfies $|U \cap \mathcal{C}| \leq 1$.

An ovoid is a set of points $\mathcal O$ in $\mathcal P$, such that every generator $U \subset \mathcal{P}$ satisfies $|U \cap \mathcal{O}| = 1$.

Let P be a classical polar space over an infinite field F. If C is a cap in P with $|\mathcal{C}| < |F|$, then C extends to an ovoid of P.

€

K ロ ト K 伺 ト K ヨ ト

A cap in P is a set of points C in P , such that every generator (i.e. maximal projective subspace) $U \subset \mathcal{P}$ satisfies $|U \cap \mathcal{C}| \leq 1$.

An ovoid is a set of points $\mathcal O$ in $\mathcal P$, such that every generator $U \subset \mathcal{P}$ satisfies $|U \cap \mathcal{O}| = 1$.

Theorem

Let P be a classical polar space over an infinite field F. If C is a cap in P with $|C| < |F|$, then C extends to an ovoid of P.

K ロ ト K 伺 ト K 手

€ つへぐ

Let P be a classical polar space over an infinite field F . If C is a cap in P with $|C| < |F|$, then C extends to an ovoid of P.

Proof.

Let $\gamma = |F|$, the smallest ordinal with $|\gamma| = |F|$. Enumerate the generators as $\{U_{\alpha}\}_{{\alpha<\gamma}}$. Inductively define a chain of caps \mathcal{O}_{β} for $\beta \leq \gamma$, with

 $\mathcal{O}_0 = \mathcal{C}$:

 \mathcal{O}_{β} meets U_{α} whenever $\alpha < \beta$.

For limit ordinals $\beta \leqslant \gamma,$ define $\mathcal{O}_\beta=\bigcup_{\alpha<\beta}\mathcal{O}_\alpha$.

For arbitrary $\beta < \gamma$, define

 $\mathcal{O}_{\beta+1}=$ \int \mathcal{O}_{β} , if \mathcal{O}_{β} meets $U_{\beta+1}$; $\mathcal{O}_\beta\cup\{P\},\quad$ otherwise with $P\in\mathcal{U}_{\beta+1}\smallsetminus\bigcup_{\boldsymbol{Q}\in\mathcal{O}_\beta}\boldsymbol{Q}^\perp.$

Let P be a classical polar space over an infinite field F . If C is a cap in P with $|C| < |F|$, then C extends to an ovoid of P.

Proof.

Let $\gamma = |F|$, the smallest ordinal with $|\gamma| = |F|$. Enumerate the **generators as** $\{U_{\alpha}\}_{\alpha\leq\gamma}$. Inductively define a chain of caps \mathcal{O}_{β} for $\beta \leq \gamma$, with

 $\mathcal{O}_0 = \mathcal{C}$:

 \mathcal{O}_{β} meets U_{α} whenever $\alpha < \beta$.

For limit ordinals $\beta \leqslant \gamma,$ define $\mathcal{O}_\beta=\bigcup_{\alpha<\beta}\mathcal{O}_\alpha$.

For arbitrary $\beta < \gamma$, define

 $\mathcal{O}_{\beta+1}=$ \int \mathcal{O}_{β} , if \mathcal{O}_{β} meets $U_{\beta+1}$; $\mathcal{O}_\beta\cup\{P\},\quad$ otherwise with $P\in\mathcal{U}_{\beta+1}\smallsetminus\bigcup_{\boldsymbol{Q}\in\mathcal{O}_\beta}\boldsymbol{Q}^\perp.$

Let P be a classical polar space over an infinite field F . If C is a cap in P with $|C| < |F|$, then C extends to an ovoid of P.

Proof.

Let $\gamma = |F|$, the smallest ordinal with $|\gamma| = |F|$. Enumerate the generators as $\{U_{\alpha}\}_{\alpha<\gamma}$. Inductively define a chain of caps \mathcal{O}_{β} for $\beta \leq \gamma$, with

 $\mathcal{O}_0 = \mathcal{C}$:

 \mathcal{O}_{β} meets U_{α} whenever $\alpha < \beta$.

For limit ordinals $\beta \leqslant \gamma,$ define $\mathcal{O}_\beta=\bigcup_{\alpha<\beta}\mathcal{O}_\alpha$. For arbitrary $\beta < \gamma$, define $\mathcal{O}_{\beta+1}=$ \int \mathcal{O}_{β} , if \mathcal{O}_{β} meets $U_{\beta+1}$; $\mathcal{O}_\beta\cup\{P\},\quad$ otherwise with $P\in\mathcal{U}_{\beta+1}\smallsetminus\bigcup_{\boldsymbol{Q}\in\mathcal{O}_\beta}\boldsymbol{Q}^\perp.$

Let P be a classical polar space over an infinite field F. If C is a cap in P with $|C| < |F|$, then C extends to an ovoid of P.

Proof.

Let $\gamma = |F|$, the smallest ordinal with $|\gamma| = |F|$. Enumerate the generators as $\{U_{\alpha}\}_{{\alpha<\gamma}}$. Inductively define a chain of caps \mathcal{O}_{β} for $\beta \leq \gamma$, with

 $\mathcal{O}_0 = \mathcal{C}$:

 \mathcal{O}_{β} meets U_{α} whenever $\alpha < \beta$.

For limit ordinals $\beta \leqslant \gamma,$ define $\mathcal{O}_\beta=\bigcup_{\alpha<\beta}\mathcal{O}_\alpha$.

For arbitrary $\beta < \gamma$, define

 $\mathcal{O}_{\beta+1}=$ \int \mathcal{O}_{β} , if \mathcal{O}_{β} meets $U_{\beta+1}$; $\mathcal{O}_\beta\cup\{\boldsymbol{P}\}, \quad \text{otherwise with } \boldsymbol{P}\in \textit{U}_{\beta+1}\smallsetminus \bigcup_{\boldsymbol{Q}\in \mathcal{O}_\beta} \boldsymbol{Q}^\perp.$