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Algebraic Combinatorics

• finite geometry (classical and nonclassical)
• association schemes
• algebraic graph theory
• combinatorial designs
• enumerative combinatorics (à la Rota, Stanley, etc.)
• much more…

Use of Gröbner Bases:  Conceptual vs. Computational



Outline

1. Motivation / Background from Finite Geometry

2. p-ranks

3. Computing p-ranks via the Hilbert Function

4. Open Problems



1. Motivation / Background from Finite Geometry

Classical projective n-space PnFq :
incidence system formed by subspaces of Fq

points =  1-spaces
lines =  2-spaces
planes =  3-spaces
etc.

n+1

Non-classical projective planes (2-spaces) exist
but spaces of dimension ≥ 3 are classical



1. Motivation / Background from Finite Geometry

An ovoid in projective 3-space P3Fq :
a set O consisting of q2+1 points, no three collinear.

Let C be a linear [n,4] code over Fq .
If C┴ has minimum weight ≥ 4 then n ≤ q2+1.

When equality occurs then a generator matrix G
for C has as its columns an ovoid.



1. Motivation / Background from Finite Geometry

An ovoid in projective 3-space P3Fq :
a set O consisting of q2+1 points, no three collinear.

For q odd, an ovoid is an elliptic quadric [Barlotti (1955); 
Panella (1955)].

When q is even the known ovoids are the elliptic 
quadrics, and (when q=22e+1) the Suzuki-Tits ovoids.



1. Motivation / Background from Finite Geometry

A spread in projective (2n−1)-space P2n−1Fq :
a set S consisting of qn+1 projective (n−1)-subspaces, 

partitioning the points of (2n−1)-space.

These exist for all n and q, and give rise to 
translation planes (the most prolific source of 
non-classical projective planes).



1. Motivation / Background from Finite Geometry

Classical polar spaces of orthogonal, unitary,
symplectic type :
projective subspaces of PnFq totally singular/ isotropic
with respect to the appropriate form, which induces a 
polarity

Orthogonal polar space: nondegenerate quadric
Unitary polar space: Hermitian variety

Projective and polar spaces constitute the
Lie incidence geometries of types An, Bn, Cn, Dn



1. Motivation / Background from Finite Geometry

Ovoid of a polar space P :
a point set O meeting every maximal subspace of P
exactly once

Spread of a polar space P :
a partition S of the point set into maximal subspaces

Many existence questions for ovoids and spreads 
remain open.

These may be regarded as dual packing problems:











bipartite graph:



Ovoid



Spread



Hyperbolic (i.e. ruled) quadrics in P3F



Hyperbolic (i.e. ruled) quadrics in P3F have spreads

S1

S2



Hyperbolic (i.e. ruled) quadrics in P3F have ovoids

All real quadrics have ovoids.  Some have spreads.



Projective 3-space P3F

points

lines

planes



Projective 3-space P3F

points

P5F quadric 

points

lines

planes

duality

type I planes

type II planes

reflection
Plücker



Projective 3-space P3F

points

P5F quadric 

type I planespoints

Plücker
lines

type II planesplanes

spread: ovoid:
q2+1 lines, 

pairwise disjoint
q2+1 points,

no two collinear



Projective 3-space P3F P5F quadric 

type I planespoints

pointslines

type II planesplanes

spread



Projective 3-space P3F P5F quadric 

type I planespoints

pointslines

type II planesplanes

Plückerq2+1 points (or 
planes), no two 

collinear
spread



Projective 3-space P3F P5F quadric 

type I planespoints

pointslines

type II planesplanes

Plückerq2+1 points (or 
planes), no two 

collinear
spread



Projective 3-space P3F P5F quadric 

type I planespoints

pointslines

type II planesplanes

Plücker
spread

q2+1 points (or 
planes), no two 

collinear



P7F quadric 

type I solids

type II solids

lines

duality
(reflection)

points



P7F quadric 
spread

points

type I solids

type II solids

lines

trialityovoid

spread
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Ovoids in
quadrics of P7Fq ,

q=2r

Ovoids in
quadrics of P6Fq ,

q=3r

Ovoids in P3Fq ,
q=2r

Known examples:

• Elliptic quadrics
admitting PSL(2,q2)

• (r odd) Suzuki-Tits ovoids
admitting 2B2(q)

Known examples:

• Examples
admitting PSU(3,q)

• (r odd) Ree-Tits ovoids
admitting 2G2(q)

Known examples:

• Examples
admitting PSL(3,q)

• (r odd) Examples
admitting PSU(3,q)

• (q=8) sporadic
example

Code spanned by 
tangent hyperplanes
to quadric
has dimension q3+1.

Basis:  p┴,  p ∈ O
|O| = q3+1

Code spanned by planes
has dimension q2+1.

Basis:  p┴,  p ∈ O
|O| = q2+1

Code spanned by 
tangent hyperplanes
to quadric
has dimension q3+1.

Basis:  p┴,  p ∈ O
|O| = q3+1



Ovoids in quadrics of PnFq ,  q=pr

• always exist for n=7 and r=1  (use E8 root lattice)
[J.H. Conway et. al. (1988);  M. (1993)]

• do not exist for p└n/2┘ > (p+n−1) − (p+n−3)n n

[Blokhuis and M. (1995)] 

e.g. ovoids do not exist
• for  n=9,    p=2,3;
• for  n=11,  p=2,3,5,7; etc.

Code spanned by tangent hyperplanes to quadric has 
dimension

Subcode spanned by tangent hyperplanes to putative 
ovoid has dimension

[(p+n−1) − (p+n−3)]r + 1n n

|O| = p└n/2┘r + 1



Ovoids in quadrics of PnFq ,  q=pr

• always exist for n=7 and r=1  (use E8 root lattice)
[J.H. Conway et. al. (1988);  M. (1993)]

• do not exist for p└n/2┘ > (p+n−1) − (p+n−3)n n

[Blokhuis and M. (1995)] 

e.g. ovoids do not exist
• for  n=9,    p=2,3;
• for  n=11,  p=2,3,5,7; etc.

• do not exist for n=8,10,12,14,16,…
[Gunawardena and M. (1997)]

Similar results for ovoids on Hermitian varieties
[M. (1996)]



2. p-ranks

F=Fq , q = pr

N = (qn+1−1)/(q−1) = number of points of PnF

The code over F=Fq spanned by (characteristic vectors of) 
hyperplanes of PnF has dimension

(p+n−1)r + 1n

[Goethals and Delsarte (1968); MacWilliams and Mann 
(1968); Smith (1969)]

Stronger information: Smith Normal Form of point-hyperplane
adjacency matrix [Black and List (1990)]



2. p-ranks

F=Fq , q = pr

N = (qn+1−1)/(q−1) = number of points of PnF

More generally, let C = C(n,k,p,r) be the code over F of 

length N spanned by projective subspaces of 
codimension k.  Then

dim C = 1 + (coeff. of tr in  tr([I – tA]−1))
where A is the k× k matrix with (i,j)-entry equal to the 
coefficient of tpj−i in (1+ t + t2 +…+ t p−1)n+1.

Original formula for dim C due to Hamada (1968).
This improved form is implicit in Bardoe and Sin (2000).

Smith Normal Form:  Chandler, Sin and Xiang (2006).



2. p-ranks

F=Fq , q = pr

Q: nondegenerate quadric in P4F
N = (q4−1)/(q−1) = number of points of Q

C = C(n,p,r) = the code over F=Fq of length N spanned by 
(characteristic vectors of) lines which lie on Q

dim C = 

1 + (1 + √17)2r + (1 − √17)2r ,   p=2
[Sastry and Sin (1996)];

2 2

1 +  p(p+1)2  
,   q=p       [de Caen and M. (1998)];2

1 + αr + βr ;   α,β =  
p(p+1)2

±
p(p2−1) 

√17,  q=pr

[Chandler, Sin and Xiang (2006)].
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3. Computing p-ranks via the Hilbert Function

Consider the [N,k+1] code over F=Fq spanned by 
(characteristic vectors of) hyperplanes of PnF.

q = pr

N = number of points = (qn+1−1)/(q−1)
k = (p+n−1)r

n

The subcode C spanned by complements of hyperplanes

has dimension k.

V: subset of points of PnF
CV : the code of length |V| consisting of puncturing:

restricting C to the points of V
dim(CV) = ?



3. Computing p-ranks via the Hilbert Function

F = Fq
R = F [X0,X1,…,Xn] =   ⊕ Rd ,

d ≥ 0
Rd = d-homogeneous part of R

Ideal  I ⊆ R
F-rational points V=V(I +J ),  J = (Xi  Xj − XiXj : 0 ≤ i < j ≤ n)q q

I = I(V) ⊆ R,   Id = I ∩Rd

Hilbert Function
hI(d) = dim (Rd /Id)

= no. of standard monomials of degree d,
i.e. no. of monomials of degree d not in LM(I )

Case q=p:
dim(CV) = hI(p−1)



3. Computing p-ranks via the Hilbert Function

F = Fq
R = F [X0,X1,…,Xn] =   ⊕ Rd ,

d ≥ 0
Rd = d-homogeneous part of R

Ideal  I ⊆ R
F-rational points V=V(I +J ),  J = (Xi  Xj − XiXj : 0 ≤ i < j ≤ n)q q

I = I(V) ⊆ R,   Id = I ∩Rd

Case q=pr:  Recall
Lucas’ Theorem.  Write

c = c0 + pc1 + p2c2 + … ;
d = d0 + pd1 + p2d2 + … .

Then

(d) ≡ Π (di )c cii
mod p

Modified Hilbert Function:
hI(d) = no. of monomials of
the form m0 m1 m2 …
such that d = d0+pd1+p2d2+…
deg(mi) = di and mi standard

p p2
*

dim(CV) = hI(p−1) r*
[M. (1997)]



3. Computing p-ranks via the Hilbert Function

Example: Nondegenerate Quadrics
I = (Q), Q(X0, X1, …, Xn) ∈ R2 nondegenerate quadratic form

F-rational points of Quadric
Q=V((Q) +J ),  J = (Xi  Xj − XiXj : 0 ≤ i < j ≤ n)

CQ = code over F of length |Q| spanned by the

q q

hyperplane intersections with the quadric

[(p+n−1) − (p+n−3)]rn ndim(CQ) = [Blokhuis and M. (1995)]



3. Computing p-ranks via the Hilbert Function

Example: Hermitian Variety

I = (U), U(X0, X1, …, Xn) =  Xi    ∈ Rq+1

F-rational points
H=V((U) +J ),  J = (Xi Xj − XiXj : 0 ≤ i < j ≤ n)

CH = code over F of length |H| spanned by the

q2 q2

hyperplane intersections with H

[(p+n−1) − (p+n−2) ]rn ndim(CH) = [M. (1996)]

Σ
i

q+1

F=Fq2 ,  q=pr
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3. Computing p-ranks via the Hilbert Function

Example: Grassmann Varieties
F=Fq ,  q=pr

Plücker embedding:

projective
s-subspaces 

of PmF

points of

PnF,  n = (m+1)−1 s+1

I ⊆ R generated by homogeneous polynomials of degree 2
(van der Waerden syzygies)

F-rational points
G=V(I +J ),  J = (Xi Xj − XiXj : 0 ≤ i < j ≤ n)
CG = code over F of length |G| spanned by the intersections of 

q q

hyperplanes of PnF with G
hI(p−1)r,  hI(d) = dim(CG) = [M. (1997)]Π

0≤ j≤ s
(m−s+j)! (d+j)!
(m+d−s+j)! j!



3. Computing p-ranks via the Hilbert Function

Application:  F=Fp ,  O a conic in P2F.

C = Code of length p2+p+1 spanned by lines

Code spanned
by complements

of lines
Code spanned

by lines

C⊥

(p+1)2

dimension

⊃C

(p+1)+12

dimension

Obtain explicit basis for C⊥ using the           secants to O
and for C using the               tangents and passants to O. 

(p+1)2

(p+1)+12



4. Open Problems
F=Fq , q = pr

N = (qn+1−1)/(q−1) = number of points of PnF
Q: nondegenerate quadric in PnF

Point-hyperplane
incidence
matrix of PnF:

(P 6∈Q)
P⊥

(P∈Q)
P⊥

rankF (p+n−1)r + 1n= 

P∈Q

P 6∈Q

rankF = 

[(p+n−1) − (p+n−3)]r + 1n n

rankF

= 

=  ?rankF



4. Open Problems

F=Fq , q = pr

Q: nondegenerate quadric in PnF

Can ovoids in Q exist for n > 7?

e.g. for n = 23 we require p ≥ 59


